Exploring and Exploiting Security Vulnerabilities in Self-Hosted
LLM Services

Zhihuang Liu Ling Hu Yonghao Tang
National University of Defense National University of Defense National University of Defense
Technology Technology Technology
Changsha, China Changsha, China Changsha, China
Izhliu@nudt.edu.cn linghu50@nudt.edu.cn tangyh@nudt.edu.cn

Tongqing Zhou" Fang Liu Zhiping Cai’
National University of Defense Hunan University National University of Defense
Technology Changsha, China Technology

Changsha, China
zhoutongqing@nudt.edu.cn

Abstract

The deployment of self-hosted large language models (LLMs) has
experienced unprecedented growth for enhanced data privacy and
control. Yet, such deployment relies on diverse web services, whose
vulnerabilities, although mentioned in a few studies, are largely un-
derexplored, conflicting with the security tenet. From a systematic
perspective, we propose LENS, a framework that explores and ex-
ploits vulnerabilities in self-hosted LLM services for comprehensive
security evaluation. LENS integrates profiling and filtering, end-
point knowledge construction, and attack graph modeling for the
automatic discovery, probing, and exploitation of public-facing LLM
deployment targets, respectively. We conducted extensive empirical
evaluation on real-world self-hosted LLM services across 16 main-
stream platforms, 71,249 discovered deployment targets, and 307
API endpoints. Both quantitative and qualitative evidence reveal the
prevalence of security vulnerabilities across different self-hosted
LLM services. Notably, 75% of responsive targets allow web API
interactions without authentication, rendering exploitation such as
injection attacks (97% for Ollama), unauthenticated access (20.2%
for AnythingLLM), and default credential abuse (60.6% for Dify). We
have responsibly reported the findings to the relevant community
and obtained 7 CVE IDs, including 4 critical vulnerabilities (CVSS >
9.0) and 2 high-severity ones.

CCS Concepts

« Security and privacy — Web application security; Software
security engineering.

Keywords

LLM Deployment, Service Security, Web Security, API Probing,
Vulnerability Exploit

*Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WWW °26, Dubai, United Arab Emirates.

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2307-0/2026/04

https://doi.org/10.1145/3774904.3792097

fangl@hnu.edu.cn

Changsha, China
zpcai@nudt.edu.cn

ACM Reference Format:

Zhihuang Liu, Ling Hu, Yonghao Tang, Tongqing Zhou, Fang Liu, and Zhip-
ing Cai. 2026. Exploring and Exploiting Security Vulnerabilities in Self-
Hosted LLM Services. In Proceedings of the ACM Web Conference 2026 (WWW
'26), April 13-17, 2026, Dubai, United Arab Emirates. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3774904.3792097

1 Introduction

LLMs have rapidly become integral components in both organiza-
tional and individual workflows [8, 13, 17, 47, 52], handling sensitive
operations such as summarizing confidential documents, assisting
clinical decision-making, and automating customer service interac-
tions [23, 37]. However, directly utilizing third-party hosted LLM
services raises significant security and privacy concerns [54], as
sensitive data might inadvertently be exposed to external service
providers or other unauthorized entities [38, 48]. Consequently,
to retain control over data privacy, operational autonomy, and
customizability [22], a growing number of individuals and orga-
nizations have opted to self-host these powerful models within
their own infrastructures [29, 45, 51]. This practice, known as self-
hosting LLM services, allows entities to run open-source models
like Llama, DeepSeek [19], and Qwen [44] on their own servers,
gaining control over both data and model behaviors. Meanwhile,
the open-source trend, coupled with improved model capabilities
and user-friendly deployment platforms (e.g., Ollama [5], Open-
WebUI [6], and Dify [3]), has significantly expanded the landscape
of self-hosted LLM services.

Real-world practices tend to deploy LLM instances on internet-
accessible servers to support remote collaboration and real-time
multi-user access [35]. Users can interact with self-hosted LLMs
in the form of web services [12], generally by invoking rich web
APIs [9] (typically RESTful APIs [20]) such as chat generation (e.g.,
/api/chat). Although enterprise-level self-hosted Al services are
usually protected within dedicated network boundaries (e.g., fire-
walls, VPNs, or private networks) [1, 7], the high operational over-
head of secure configurations—such as reverse proxies, SSO, SSL
certificates, and internal connectivity—leads individuals, research
institutions, and startups to bypass them for rapid deployment [11].
As a result, nowadays self-hosted LLM services are often launched
with default or insecure configurations, leaving them publicly ex-
posed without authentication or with weak isolation [31, 49]. This

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3774904.3792097
https://doi.org/10.1145/3774904.3792097

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates.

may cause accidental exposure [39] to external attackers, ironically
turning the intended security benefit of self-hosted deploy-
ment into a source of vulnerabilities such as unauthorized
disclosure, manipulation, and access.

Yet, the study of security risks in self-hosted LLM services is in
its infancy, with only preliminary investigations on the landscape
of self-hosted deployment and potential risks [29]. Specifically, in
the absence of active probing and exploitation steps in standard
penetration workflows, the threat level of underlying vulnerabilities
remains unclear. For example, simply reporting a probing request
that returns an HTTP 200 status code as risky is insufficient [29],
as response content with and without error indicators has vastly
different implications for real-world attacks. We note that only
an attack-oriented vulnerability exploration could ring the bell !.
Otherwise, the true severity of self-hosted LLM service vulnerabili-
ties may be grossly underestimated, and defenders lack concrete
evidence to drive remediation.

This work aims to bridge this gap by conducting a systematic
security vulnerability exploration and exploitation of real-world
self-hosted LLM services that are reachable via the public inter-
net. For the study to be generic and automatic, it faces a two-fold
challenge. It involves integrating multiple stages into a cohesive,
automated pipeline that remains extensible and adaptable across
diverse LLM platforms and configurations. Furthermore, we must
address how to evaluate discovered vulnerabilities and model prac-
tical exploit chains on these exposed targets, thereby turning them
into concrete attacks while maintaining ethical boundaries.

To tackle these challenges, we propose LENS, a framework for
automated security vulnerability exploration and exploitation of
self-hosted LLM services. LENS is designed as a pipeline that inte-
grates target discovery, API probing, and vulnerability exploitation
of self-hosted LLM services in the wild. It integrates comprehen-
sive knowledge bases of fingerprints, API endpoints, and Common
Vulnerabilities and Exposures (CVEs) across different LLM deploy-
ment platforms, enabling platform-adaptive utilization of available
APIs for probing. Moreover, LENS leverages attack graph modeling
to chain vulnerability assessment and exploitation processes for
self-hosted LLM targets. Using LENS, we conduct an extensive
measurement study of real-world self-hosted LLM services
and uncover empirically validated security vulnerabilities.

In summary, this paper makes the following contributions:

e Proposes the first framework (LENS) aimed at deeply explor-
ing, assessing, and exploiting vulnerabilities of internet-exposed
self-hosted LLM services. LENS identifies vulnerable targets and
demonstrates concrete exploit chains, thereby shedding light on
the real impact of these weaknesses.

e Large-scale evaluation based on LENS provides quantitative and
qualitative evidence that reveals critical real-world vulnerabilities
in self-hosted LLM services, including authentication bypass,
privacy breaches, full database compromise, and system takeover,
thus highlighting the true severity of the threat landscape. Our
responsible disclosures have been acknowledged and assigned 7
CVE IDs.

!In fact, the majority of high or critical LLM-based application risks remain unad-
dressed due to the lack of real-world impact evaluation [40].

Zhihuang Liu, et al.

e Provides countermeasures derived from empirical insights based
on evaluation results. We also release our framework implemen-
tation and a continuously maintained intelligence database to
support community defense efforts 2.

2 Background and Related Work

2.1 LLM Deployment Landscape and Risks

2.1.1 Deployment Landscape. The rapid adoption of self-hosted
LLMs by individuals and organizations is fueled by several factors:
the increasing demand for data privacy and security, the availability
of powerful open-source models (e.g., Llama 4 [4], DeepSeek-R1
[19]), customized business integration needs, and the prolifera-
tion and ease-of-use of development tools. Self-hosted LLM service
targets can be discovered through cyberspace search engines by
querying the platforms (e.g., Ollama) used to deploy them [11].
The Censys research team [49] finds that the majority of publicly
available online Ollama instances host models under 10 GB, reflect-
ing typical user deployment resources. Conversely, a minority of
instances host large models ranging from 10 GB to over 500 GB,
suggesting dedicated and well-funded setups.

LLM deployment patterns vary significantly across entities, with
several classification approaches [27]. In [29], Hou et al. categorize
the multi-layered tools involved in LLM deployment into four key
components: Inference Engines, Model Serving Frameworks, Appli-
cation User Interfaces, and Developer Tools and Ecosystems. This
paper focuses on platforms specifically designed for LLM deploy-
ment and further groups these platforms into two main categories
based on whether they primarily provide web-based interfaces:
Web-Backend Engines and Web-Frontend Interfaces.

Notably, such rapidly deployed self-hosted services, especially
in environments such as individual users, research institutions,
or small startups, often prioritize usability and performance over
security [29]. Consequently, a large number of self-hosted LLM
services are publicly exposed on the internet without essential
security controls such as firewalls or VPN isolation [11, 31, 49].

2.1.2 Security Risks. Inadequately protected self-hosted LLM ser-
vices present an expanding attack surface related to both web ser-
vices and LLM features, involving the following risks: unauthorized
APIT access, jailbreaking, content abuse, resource hijacking, back-
door injection, and model poisoning. Compared to traditional web
applications, self-hosted LLM services inherit conventional vulner-
abilities while introducing LLM-specific attack vectors (e.g., prompt
injection) and amplified privacy risks through inadvertent data dis-
closure in Al conversations. This work primarily focuses on a series
of exploitation risks triggered by exposed targets and API endpoints
in public-facing self-hosted LLM services, such as resource abuse
and model poisoning. Other broader risks associated with LLM
security [18] are out of our scope. Specifically, the rapid emergence
of open-source platforms for LLM deployment further compounds
these risks, as these tools often contain insecure default settings.
Moreover, self-hosted entities often lack security awareness and
robust protections, frequently exposing LLM services directly to the
public internet with insecure default configurations and inadequate
ZProject page: https://cristliu.github.io/lens, which also includes all CVE details. Note

that we reported first to institutional authorities and affected vendors, then to CVE
after awaiting remediation without adequate response.

https://cristliu.github.io/lens

Exploring and Exploiting Security Vulnerabilities in Self-Hosted LLM Services

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

Attack Graph Modeling » e %
NN Xt [
N I [Request Construction Precondition _@J
Classified by deployment platform O] L] {URL, HTTP method, payload}
Ao m | — Target/Instance
. O] U [®= unavailabi
~| Unavailable = £=h
8 — — Probing Indicator
Iy NN = . "
Self-hosted l[')ﬁ/}) Response EE Accessible - Intermediate Exploit
LLM Services || ===, Request Analysis & Manipulate
I Combinations Collect Info Resource
P Fingerprint Filtering M =
L ~Guided Platfo.rm and De- Dec 1 @] Exploitable Prompt Manipulate
Cyberspace Retrieval -specific duplication active targets R = Injection Databases
Search targets API endpoint N Ultimate Exploit Goal
Engines knowledge Quantitative Assessment Mislead Unauth System Code
Users Access Compromise Execution
Discovery 3223 Probing - Exploitation

Figure 1: LENS framework for automated in-depth exploration and exploitation of vulnerabilities in self-hosted LLM services.

monitoring [29, 37, 41, 43, 53]. Consequently, authentication and
access control remain major concerns [26, 30].

Cisco’s research [11] discovers over 1,100 exposed Ollama servers,
with approximately 18.8% (214 instances) actively hosting and re-
sponding to requests with live models. These services lack authenti-
cation mechanisms. Cisco’s Tziakouris concludes that the findings
indicate "widespread neglect of fundamental security practices such
as access control, authentication, and network isolation" in custom
and self-hosted AI [31].

While existing research and industry efforts largely focus on
training and inference security [16], deployment-specific vulner-
abilities remain underexplored [50]. The recent empirical study
[29] begins to reveal the current landscape of LLM deployment by
analyzing instance characteristics and exposure surfaces.

2.2 Threat Model and Design Goal

Given the fact that self-hosted LLM services rely on web services
(e.g., RESTful API calls) for interface interaction and data transmis-
sion, our threat model focuses on external attackers from the public
internet, who have no legitimate access privileges to the target
LLM deployments. The attacker’s objectives include unauthorized
access to LLM services, data exfiltration from backend databases,
and model behavior manipulation. The attacker’s capabilities en-
compass using cybersecurity tools (e.g., FOFA [2], dirsearch, nmap)
for discovery and API probing, with prior knowledge obtained from
public platform documentation and open-source repositories.

This work aims to design a framework for penetration testing of
self-hosted LLM services that reflects a typical attack process likely
to occur in practice. The design goal spans from asset discovery
and probing to conducting the first systematic analysis of
security vulnerability exploration and exploitation of self-
hosted LLM services at a large scale, with greater comprehen-
siveness and depth. The designed framework should also include
attack modeling methods that can chain exploitable endpoints dis-
covered during probing to obtain practical exploit interpretation
and visualization.

3 Methodology

The proposed LENS framework embodies a typical penetration
testing workflow [21], consisting of discovery, probing, and ex-
ploitation (as illustrated in Fig. 1) for identifying publicly accessible
self-hosted LLM services, analyzing available API endpoints, and
chaining exploitable actions to perform a complete attack.

3.1 Self-Hosted LLM Service Discovery

The discovery phase uses the fingerprints of deployment platforms
and filtering mechanisms to identify publicly accessible self-hosted
LLM services (Assets) on the Internet.

Fingerprint-Guided Discovery. Let the set of cyberspace as-
sets collected by search engines (e.g., FOFA) be denoted as A =
{a1,ay,...,an}, where each asset g; is characterized by features
such as IP address, port, protocol, and website title. The rule set
R ={ry,r,...,rm} encompasses retrieval regular expressions or
keywords for each platform p. LENS prioritizes platform identifi-
cation through predefined fingerprint rules. For instance, query-
ing with the special label app="011ama" retrieves self-hosted LLM
services that have deployed Ollama. For platforms lacking prede-
fined fingerprint rules, LENS combines multiple metadata fields
to construct queries. For example, the query title="1lamafile" ||

server="1lamafile" identifies assets potentially running 11amafile.

Users can examine candidate assets C,, obtained from these rules
to avoid false positives.

Filtering and De-duplication. LENS subsequently applies ac-
tive probing to filter live targets from candidate assets. It adaptively
parses asset characteristics and supports multiple formats of target
hosts. For each target, LENS automatically sends GET requests via
both HTTP and HTTPS protocols to the root path. A target is con-
sidered alive if either request receives a response within the timeout
period. If the response status code falls within the 2xx (success), 3xx
(redirection, e.g., login page), or 4xx (client error, including 404 for
missing pages) range, the liveness function Alive(c;) is set to True.
LENS then deduplicates active targets by merging entries with the
same IP per platform, prioritizing those with more complete meta-
data and more recent activity (e.g., last updated time in FOFA). This
ensures unique targets and reduces redundant tests. For platform
p, the final target set is defined as T, = {c € C, : Alive(c) = True},
where the set notation inherently ensures element uniqueness ac-
cording to our deduplication strategy.

3.2 Probing Web APIs in LLM Services

LENS systematically probes web-accessible API endpoints to char-
acterize the exposed functionality of self-hosted LLM services.
Endpoint Knowledge Base Construction. LENS constructs a
platform-aware endpoint knowledge base through multi-source in-
telligence. We aggregate candidate endpoints from official documen-
tation, source code repositories, and commonly exposed web appli-
cation paths to form a comprehensive database AE = {aey, aey, .
For each element ae; € AE, LENS maintains metadata including a

..,aeg}.

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

path string s; as endpoint beginning with "/", the HTTP method
m; € {GET,POST,DELETE}, and optional request parameters pm;,
yielding tuples (s;, m;, pm;). The corpus spans typical LLM ser-
vice functionalities, with collected API endpoint capabilities includ-
ing model lifecycle management (e.g., /api/pull for download-
ing new models), chat generation (e.g., /api/chat), advanced Al
features (e.g., /api/v1/knowledge for creating knowledge bases),
and widely adopted OpenAl-compatible interfaces (e.g., /v1/chat
/completions).

Request Generation and Probing. For each platform p, LENS
constructs a request matrix M, = T, X AE,. For (t;, ae;) € M,,
LENS generates an HTTP request following (s;, m;, pm;) and records
response metadata including status, key headers, and bounded re-
sponse prefixes. Specifically, LENS transforms the host attributes
(IP, port, protocol) of each target t; into a base URL base(t;) =
pro://IP:port, where the protocol defaults to http when unspec-
ified. For (s;, m;, pm;), the probe URL is url(t;, ae;) = base(t;)]ls:,
where || denotes URL path concatenation and LENS loads an op-
tional JSON payload pm; from the knowledge base for m; in {POST,
DELETE}.

Accessibility and Exploitability Analysis. Let R(¢;,s;) de-
note the response to the probing endpoint s; on target ¢;. Based on
HTTP semantics [24], controlled testing, and collected intelligence,
LENS defines criteria for endpoint accessibility and exploitability,
as summarized in Table 1. LENS first distinguishes between three
primary categories: accessible endpoints where Access(R) = True,
non-accessible endpoints where Access(R) = False, and indetermi-
nate endpoints where network errors prevent classification. Within
accessible endpoints, LENS further identifies exploitable instances
where Exploit(R) = True, indicating functional API endpoints
capable of processing legitimate requests. This multi-tiered clas-
sification enables precise quantification of actual attack surface
exposure versus mere service presence. The probing results are

systematically aggregated to compute platform-specific accessi-
. |{(tj,s,-):Access(Rtjvsi):True}|
bility rates a, = [T, %AE, |

|{(tj,si):Exploit(Rtjysi):True}|
Bp = [TpXAEp|
platform security posture and API surface exposure.

Security Risk Assessment. To prioritize exploitation efforts
and quantify exposure severity, LENS integrates a multi-dimensional
risk assessment module that evaluates both deployment platforms
and individual targets. Detailed scoring formulas are provided in
Appendix C.

and exploitability rates

, providing quantitative measures of

Table 1: Criteria for API endpoint probing classification

Response Status and Body ~Accessible Exploitable ~Criteria Description

2xx 4 v

Response with valid content (typically json), no error
keywords, non-HTML content

Status code 2xx but blank response body

For endpoints /api/copy and /api/delete, blank
response is considered successful

Status code 2xx with standard HTML response
/docs, /api/docs, /signin endpoints are ex-
ploitable even with HTML response

Status code 2xx but contains error keywords. End-
point exists but returns error content

Redirects or client errors indicate endpoint exists

2xx + Blank
2xx + Blank (Exception)

2xx + HTML
2xx + HTML (Exception)

2xx + Error Keywords

3xx, 4xx (except 404)

404
5xx.

Endpoint does not exist or is not accessible
Server errors, cannot determine endpoint status

ER AN NN
X%x%[X% X A% WX

Timeout & Errors Connection issues, cannot determine endpoint status

Zhihuang Liu, et al.

FOFA(app="Dify’) HTTP(GET, 20c4xx)

1P:Port/Domain

| Tcm?zwe) | | TcPw.lpcm) |

= = H \

e e ol

(Misleading, Bias..

(a) Model forgery attack

(b) Exploiting web backend credentials
Figure 2: Attack graphs for exploits.

3.3 Attack Graph-Based Exploit Analysis

Building upon the analysis from previous phases, we analyze ex-
ploitation scenarios using automatically constructed interpretable
attack graphs. The graphs both reveal vulnerability exploitation
chains and provide guidance for risk management and proactive
defense.

Interpretable Attack Graph Modeling. Drawing from estab-
lished cyber-attack scenario representations [32, 33], we propose
the first attack graph formalization specifically designed for explor-
ing vulnerability exploitation paths in self-hosted LLM instances.
Our attack graph G(V, E) represents event flows in a top-down
manner, where vertices V = {01, 0, . ..,0,} encompass five distinct
node types (see Fig. 1): Precondition, Target, Probing, Exploit, and
Attack Goal. Each node type serves a specific semantic purpose in
the exploitation timeline. Precondition nodes, visualized as parallel-
ograms, represent the preparatory work required to discover LLM
deployment targets (depicted as ellipses), typically involving FOFA
searches and liveness confirmation as described in Section 3.1. Gray-
filled rectangles denote Probing processes that encompass RESTful
API requests and response analysis. Red-filled rounded rectangles
with dashed borders represent Exploit nodes that facilitate state
transitions, such as information collection operations. Conversely,
solid-bordered rounded rectangles indicate the achievement of final
Attack Goal. Directed edges E represent specific state transitions
between nodes. When edges converge with arc connectors, they
indicate AND logic, meaning multiple prerequisite conditions must
be satisfied simultaneously for the transition, formally expressed
as (v; A vj) — vg. Otherwise, OR logic applies, where any single
edge can trigger the next state, represented as (v; V vj) — vg. The
attack graph is constructed in a fully automated process, including
State Assessment via scanning and probing, Conditional Node Addi-
tion triggered by probe responses, and Path Determination through
dependency analysis.

We instantiate this attack graph method across three representa-
tive exploitation scenarios, each demonstrating distinct vulnerabil-
ity classes and attack vectors.

Prompt Injection via Model Forgery. Leveraging LLMs’ natu-
ral language understanding and instruction-following capabilities,
adversaries inject malicious content into system prompts to influ-
ence user interactions, consequently leading to unintended and
harmful outputs. For Ollama instances, the graph instantiation pro-
ceeds as follows. The preconditions v; = FOFA(app="0llama")
and v, = HTTP(GET, 2xx—4xx) conjunctively lead to the target ur.
Probing then discovers available models via v5 = GET(/api/tags)

Exploring and Exploiting Security Vulnerabilities in Self-Hosted LLM Services

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

FOFA(app="X")

HTTP(GET, 2x0x-3xx)

Open-WebU| - AnythingLLM
Targets Targets

—
SillyTavern
Targets

Dify Targets

| GET(apifconfig,true) |

in_page, [POST(/api/chats
false) recent,true)

GET(/console/api/
m-featrues, true)

‘ R""""":S;"ei)"”“e' H GET{(/signin false) ‘

‘ featrues.auth=false ‘ ‘ ['name’, "slug’] in json_data[0] ‘

Check(chat_indicators,true)

All login-related
ey-value as false

Access to the web interface
without authentication

Access to the web interface
without authentication

or vy = GET(/v1/models), which yields a model list M. If M # 0,
the graph introduces vc; = Collect Info. The exploit phase imple-
ments uyr = Manipulate Resourceandvp; = Prompt Injection
via three sequential operations: copying the original model us-
ing POST(/api/copy), removing the original through POST(/api
/delete), and recreating a model with identical naming but in-
jected system prompts via POST(/api/create). The attack cul-
minates when users interact with the compromised model via
/api/generate (vs) or /api/chat (ve), triggering harmful informa-
tion dissemination, misguidance, or biased content generation. The
complete attack path follows the formal chain: (v; A v2) — vy —
(v3 Vu4) = ver = opmr — vpr — (05 V vg) — vg. An illustration
of the complete exploit path for this attack is shown in Fig. 2(a).
Unauthenticated Access Exploitation. Self-hosted LLM ser-
vices frequently employ default configurations or simplified se-
tups, consequently creating unauthenticated access vulnerabili-
ties. These misconfigurations allow direct access to sensitive web
interfaces, thereby exposing confidential data and administrative
functions to unauthorized users. Following the canonical event flow
{Precondition — Target — Probing — Exploit — Attack_Goal}
we construct attack graphs for four prevalent web-interfaced LLM
platforms (see Fig. 3). Each platform requires distinct probing strate-
gies. For Open-WebU]L, if GET (/api/config) is accessible (path for-
ward to ucy) and gets auth = false, it reaches vg, which denotes
unauthenticated access. For AnythingLLM, if the status code of the
probe GET(/api/workspaces) is 200 and the response body con-
tains indicative fields (workspaces, name, or slug), the path proceeds
to vcr and then to vs. Dify’s authentication is verified by checking
for redirection to /signin or /auth routes and inspecting system-
feature configurations via /console/api/system-features. Sil-
lyTavern is evaluated by detecting redirections to login interfaces
and the requires_login field in POST /api/chats/recent.
System Compromise via Default Configuration. Since LLMs
lack inherent conversation memory retention, deployment plat-
forms typically integrate backend databases for interaction stor-
age. Dify exemplifies this pattern by defaulting to PostgreSQL
with hardcoded credentials (username postgres and password
difyai123456) embedded within source code. When port 5432 re-
mains exposed for remote database management, security-unaware
administrators frequently retain default credentials, thereby en-
abling adversarial exploitation and substantial data breach risks.
As shown in Fig. 2(b), the attack graph begins with standard pre-
conditions, progressing through TCP port detection: o1 — icp_s5432.

<
Access to the web interface
without authentication

Figure 3: Attack graphs for direct interface access without authentication across several web frontend platforms.

>

>
Access to the web interface
without authentication

Upon confirming port accessibility, it attempts default credential au-
thentication: vicp 5432 — Usqlcon- Successful authentication enables
database manipulation capabilities, represented by the transition
Usgleon — UMD- Another exploitation path indicates that adversaries
may also try to scan other common database ports and attempt
brute-force connections. Furthermore, the exploitation potential
escalates through PostgreSQL’s CVE-2019-9193, which permits su-
peruser privilege escalation for arbitrary system command execu-
tion via the COPY TO/FROM PROGRAM feature introduced in versions
subsequent to 9.3. This creates an additional serious exploit path:
(UMD A Z)CVE-2019-9193) — UG_Execute Arbitrary Code-

4 Evaluation

In this section, we empirically demonstrate the risks of self-hosted
LLM services explored by the proposed LENS. To the best of our
knowledge, this work represents the first step toward comprehen-
sive exploration and exploitation of self-hosted LLM service security
vulnerabilities.

Setup. We discovered numerous LLM deployment targets ex-
posed on the public internet in March 2025, which motivated us to
investigate potential security risks in depth. For targets on the pub-
lic internet, LENS implementation requires ethical considerations
(detailed ethical considerations are presented in Appendix A). There-
fore, to conduct more in-depth exploration and exploitation, we first
recruited volunteers from our institution who were unaware of this
work (all holding master’s degrees or higher in computer science-
related fields) to participate in our experiments. They agreed to the
informed consent form before participating in the study. Following
online LLM deployment tutorials, they independently deployed the
latest versions of six LLM platforms: Ollama, Open-WebUI, vLLM,
AnythingLLM, SillyTavern, and Dify, and pulled open-source LLMs
such as 11ama3:latest and deepseek-r1:7b. They exposed these
platforms to the public internet for remote access or small-group col-
laborative use. These LLM targets continued running until August
2025, during which the volunteers conducted daily LLM interactions
such as document summarization. We refer to these voluntarily
participating self-hosted LLM services for in-depth testing as opt-in
targets, all of which can be discovered through cyberspace search
engines such as FOFA.

The data reported in this paper were obtained from an im-
plementation conducted in August 2025 on self-hosted LLM
services on the internet, including opt-in targets. The design and

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

Zhihuang Liu, et al.

Table 2: Summary of self-hosted LLM service discovery and API probing, categorized into backend and frontend based on
whether the platform’s primary interaction mode is via a web interface.

Platform Discovered Discovered in [29] Alive (Rate) Deduped (Retention) Probes Acc. Rate a, Exp. Rate 3, Acc. Target Rate Exp. Target Rate Resp. Rate in [29]
Ollama 9,999/384,588 384/155,423 1959 (19.6%) 1,811 (92.4%) 1,811x13=23543 12.0% (2822/23,543) 6.8% (1597/23,543) 23.7% (430/1811) 23.2% (421/1811) 80.47% (309/384)
llama.cpp 4,786 353/4,234 908 (19.0%) 644 (70.9%) 644x9=5,796 13.3% (770/5,796) 4.3% (249/5,796) 14.8% (95/644) 14.0% (90/644) 10.20% (36/353)
VLLM 34 362/6,077 8(23.5%) 6 (75.0%) 6x26=156 0.0% (0/156) 0.0% (0/156) 0.0% (0/6) 0.0% (0/6) 2.76% (10/362)
LM Studio 25 N/A 3 (12.0%) 3 (100.0%) 3x24=72 0.0% (0/72) 0.0% (0/72) 0.0% (0/3) 0.0% (0/3) N/A
gptdall 4 335/2,572 2(50.0%) 1(50.0%) 1x3=3 0.0% (0/3) 0.0% (0/3) 0.0% (0/1) 0.0% (0/1) 3.88% (13/335)
Llamafile 4 36/39 0(0.0%) 0 N/A N/A N/A N/A N/A N/A
Open-WebUI 9,999/126,579 381/37,242 7,758 (77.6%) 5,896 (76.0%) 5,896x19=112,024 70.6% (79128/112,024) 11.0% (12343/112,024) 75.4% (4448/5896) 70.9% (4181/5896) 0.52% (2/381)
Dify 9,999/76,109 N/A 8,884 (88.8%) 6,136 (69.1%) 6,136x23=141,128 39.3% (55442/141,128) 13.7% (19377/141,128) 85.3% (5232/6136) 82.5% (5062/6136) N/A
LobeChat 9,999/13,352 N/A 5,224 (52.2%) 3,152 (60.3%) 3,152x20=63,040 15.4% (9713/63,040) 0.1% (39/63,040) 23.5% (741/3152) 0.1% (3/3152) N/A
SillyTavern 9,999/11,244 N/A 4,816 (48.2%) 4,181 (86.8%) 4,181x22=91,982 52.9% (48656/91,982) 0.3% (240/91,982) 50.7% (2120/4181) 5.0% (210/4181) N/A
AnythingLLM 6,461 351/3,766 1,564 (24.2%) 1,047 (66.9%) 1,047x28=29,316 21.3% (6241/29,316) 1.2% (343/29,316) 22.7% (238/1047) 16.5% (173/1047) N/A
ChatGPT-Next-Web 5,607 379/25,883 2,763 (49.3%) 1,604 (58.1%) 1,604x20=32,080 10.8% (3449/32,080) 0.1% (32/32,080) 10.4% (167/1604) 0.1% (2/1604) 0.26% (1/379)
ComfyUl 4,276 375/15,219 507 (11.9%) 346 (68.2%) 346x13=4,498 14.3% (642/4,498) 3.7% (167/4,498) 16.2% (56/346) 8.1% (28/346) 11.20% (42/375)
Chatbox 38 N/A 31 (81.6%) 21 (67.7%) 21x20=420 24.0% (101/420) 0.0% (0/420) 28.6% (6/21) 0.0% (0/21) N/A
Jan-Al 8 380/28,445 3(37.5%) 3 (100.0%) 3x20=60 0.0% (0/60) 0.0% (0/60) 0.0% (0/3) 0.0% (0/3) 1.32% (5/380)
text-generation-webui 5 324/2,051 2 (40.0%) 2 (100.0%) 2x4=8 50.0% (4/8) 0.0% (0/8) 50.0% (1/2) 0.0% (0/2) 0.62% (2/324)

Acc./Exp. Rate show percentage and total count of all acc./exp. requests. Acc./Exp. Target Rate shows the percentage of targets with at least one acc./exp. request.

implementation of LENS were optimized (e.g., concurrent process-
ing) to support large-scale testing. LENS automates the integration
of all steps, allowing all experiments to be completed within two
hours.

4.1 Exposure of Self-Hosted LLM Services

We used FOFA as the cyberspace search engine to survey public-
facing targets of self-hosted deployments based on 16 popular LLM
deployment platforms, with characteristics summarized in Table 2.
In contrast to [29], we exclude four platforms (e.g., Jupyter Note-
book) that are not specifically designed for LLM deployment and
may result in the discovery of unrelated services. Our study fo-
cuses more extensively on high-volume platforms such as Dify and
SillyTavern, which were not included in the previous work.

For large-scale platform assets, we sample 9,999 targets, repre-
senting the maximum number retrievable via the FOFA API (ex-
ceeding the sample size required for 95% confidence and 5% margin
of error). By default, FOFA provides nearly year-long results, al-
lowing us to survey the latest landscape while limiting excessive
network scanning and probing. Consequently, we discover fewer
assets of certain types compared to Hou et al. [29]. Nevertheless,
our fingerprint-guided retrieval strategy, coupled with additional
liveness verification and deduplication, helps reduce false positives
and ensures the accuracy of subsequent testing targets. Overall,
platform-related assets with web frontends exhibit higher survival
rates than backend-type assets, as deploying entities require acces-
sible frontend interfaces, whereas backends may be inadvertently
exposed for brief periods due to improper deployment or closed for
security reasons.

4.2 Accessibility and Exploitability of APIs

On opt-in targets, we scanned available API endpoints using Dirsearch
and BurpSuite, identifying endpoints not found in official documen-
tation that hold significant probing value (excluding file paths).
Combined with publicly available intelligence, the constructed
knowledge base covers 307 API endpoints across 16 types of LLM
deployment platforms, with 119 unique endpoints. The complete
API endpoints with request methods, payloads, and descriptions
for every platform can be found on our project page.

The ethical API probing results are shown in Table 2 and Fig.
4(a). Platforms with a larger number of active assets tend to exhibit

i
£33 1R @5%75%) Ger,
— Whiskers (1.5410R)
O outier

&

== pos o
= DELETE Accsssi

»
bl

N
S

Probe Count
5
© d |_ﬂ]_|omnmo ®
© ©
Number of API Endpoints
3 @

o

|
2 7 wm | |
Accessible Probes Exploitable Probes Ollama AnythingLLM Open-WebUI _SillyTavern oify VLLM

Probe Type Platform

o

Total Probes

(a) Probe for large-scale public targets (b) Platform-specific results of opt-in targets

Figure 4: Statistics on API probing results.

higher rates of both accessibility and exploitability. Overall, 54.1%
of public-facing targets respond to endpoint probes, and 75.0% of
these allow API interactions without any authentication, making
them exploitable. The outliers and discrepancies stem from inherent
differences in real-world platform characteristics (e.g., popularity,
openness, and security configurations). For example, vLLM tar-
gets employ IP-based blocking configurations that prevent external
probing access (0%). In Table 2, a noticeable decline occurs from
accessible requests to successful (exploitable) requests as strict fil-
tering rules identify requests with potential exploitation value. For
example, for Dify, the accessible request rate of 39.3% drops to
an exploitable request rate of 13.7%. This trend is also evident in
Fig. 4(a), which shows the distribution of probe counts, accessi-
ble counts, and exploitable counts for all instances. The maximum
probe count for all targets does not exceed 56 and is concentrated
around 20; accessible counts exhibit a wider distribution range,
whereas exploitable probes are typically below 3 per host, though
a few outliers exist.

Comparing with the Response Rate (i.e., Exp. Target Rate) in
[29], our probing results for Ollama and Open-WebUI show oppo-
site trends in successful host rates. Possible reasons include our
stricter exploitability criteria, our use of engine-maintained rule
fingerprint libraries, and our larger survey sample. [29] considers
any response as evidence of unauthenticated API requests, suggest-
ing permissive default configurations and minimal access control.
However, our opt-in targets reveal that many responses are not gen-
uinely exploitable, returning "not found," "error," or default blank
HTML pages. Therefore, our accessibility and exploitability criteria
provide clearer guidance for determining practical vulnerabilities.

Exploring and Exploiting Security Vulnerabilities in Self-Hosted LLM Services

o

o 60
8
8
@ 40
Expabity JLI0Y BFY 256 o3 198 120 14 12 [0
20
E E 2
I=I Criical Behavior JECKRELERIPRNTERREEY 246 69 38 78
PARENEN PSRN
S &
N <€ SN
& & ¢ §

R
£ PP P
o s

LLM Platforms LLM Platforms

Risk Dimensions.

SES
S8

&

#EE S

(a) Platform risk score comparison (b) Dimensional score heatmap

Figure 5: Quantitative assessment of platform-level risks.

Score
PO-Y
5 8
Final S
8 &

el GVE Accessibifly Explofabilty Crilcal Behavior 7 10K 206 24563
Assessment Dimensions Target Rank (Sorted by Final Score)

(a) Dimensional scores (b) Overall target score ranking

Figure 6: Quantitative assessment of target-level risks.

For opt-in targets, we conducted 136 probes (with 94 unique API
endpoints) across the 6 deployed platforms, with results shown
in Fig. 4(b). Overall, accessibility rates are relatively high, but ex-
ploitability rates are lower. All frontend platforms reject POST-type
requests. Only Ollama and vLLM have successful POST request
cases, as backend frameworks default to exposing usable interfaces
such as /api/chat and /v1/completions for text generation. Con-
versely, Open-WebUI requires authentication when calling the same
/api/chat functionality.

4.3 Quantitative Assessment of Security Risk

We provide the first quantitative metrics for assessing security
risks in self-hosted LLM services, covering both platform-level
and target-level evaluations. We consider four dimensions—CVE,
Accessibility, Exploitability, and Critical Behavior—to calculate the
comprehensive security risk assessment metrics for evaluation and
comparison. Detailed calculation processes and parameter values
are presented in Appendix C. For statistical fairness, platforms with
very few assets or no accessible data during probing are omitted
from this stage, as their sample sizes do not support meaningful
comparison.

Fig. 5(a) presents the overall platform ranking and weighted
scores for each dimension. The results show that popular platforms
such as Ollama, Open-WebUI, and Dify receive notably higher com-
posite vulnerability scores. As shown in Fig. 5(b) (pre-weighting),
these platforms are especially concerning in the Exploitability and
Critical Behavior dimensions. Notably, although Ollama’s Accessi-
bility score is not high, its scores in the other three dimensions,
particularly the last two, are elevated, resulting in a prominent
overall security risk.

Fig. 6(a) illustrates the score distributions for all targets across
both overall and per-dimension (unweighted) results. Accessibility
scores show the widest range, whereas the other three dimensions
are more concentrated within the 0-40 range. Fig. 6(b) visualizes
final risk scores and rankings across all targets. Among the top 100

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

Prompt Injection /430 97.0%
(Ollama) :
Unauth Access

0.8%
(Open-WebUl) s %

Unauth Access o
(AnythingLLM) 48| | 202%
Unauth Access

1.6%
(SillyTavern) 2120 %

Exploit Type and Platform

/6136 3.5%

Config Exploit
(Dify)

0 100 200 300 400
Number of Successful Targets

Figure 7: Statistics on successful exploits across different
accessible LLM services.

highest-risk targets, 79% are exposed to CVE threats (compared to
22.5% across all targets), and all are impacted by critical endpoints
(compared to 40.2% overall).

4.4 Exploiting LLM Service Vulnerabilities

Based on the proposed interpretable attack graph modeling in LENS,
we seek to answer how security vulnerabilities in self-hosted LLM
services can be exploited in practice to cause harm. Fig. 7 sum-
marizes the proportion of targets affected by three representative
attacks.

Prompt Injection Exploit for Misleading. This exploit aims to
inject malicious instructions that guide LLMs to produce misleading
responses into the system prompt of a model whose name remains
consistent with the original. When normal users employ this forged
model, they receive incorrect guidance. Successful implementation
constructs a complete attack graph, with an example using the
Ollama platform illustrated in Fig. 2(a). Ethically approved testing
conducted on 430 targets with accessible API endpoints shows that
complete attack graphs are achievable on as many as 417 (97%)
targets, indicating the prevalence of this exploit. The final attack
effect is shown in Fig. 8 (Appendix B), where the injected prompt
can guide the LLM to include seemingly reasonable and supported
statements that make the harm more covert.

Unauthenticated Direct Access Leading to Information
Disclosure. Based on the exploit chain that bypasses authentica-
tion for access, complete attack graphs for targets subjected to this
exploit among four web frontend platforms are presented in Fig. 3
in Appendix B, with test results shown in Fig. 7. We find no unau-
thenticated access risks among Dify targets in our sample, whereas
the other three platforms exhibit such risks, with AnythingLLM
showing particularly severe unauthenticated access control issues.
Fig. 10 in Appendix B uses an opt-in target deploying the Any-
thingLLM platform as an example, showing that adversaries can
directly access the frontend interface without any authentication,
thereby obtaining all user conversation privacy. Although knowl-
edge base documents are not directly viewable, a carefully crafted
prompt can elicit content from files like "Meeting20241015.docx,"
resulting in significant privacy leakage. Furthermore, unauthenti-
cated attackers gain the same administrative privileges as platform
owners, including deleting workspaces and knowledge bases.

Exploiting Default Configurations: From Zero to Root.
Based on the approach of constructing this exploit attack graph in
LENS (complete schematic in Fig. 2(b)), we discovered that among
6,136 surviving Dify targets online, 358 added and exposed port

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates.

5432 for database connection and management. Among these 358
targets, the success rate of connection using default credentials
(postgres and difyai123456) reached as high as 60.6% (see Fig. 7),
presenting severe security vulnerabilities with simple exploitation
means. Fig. 11 in Appendix B demonstrates the adversary logging
into the database and achieving complete control during this ex-
ploit process. The database stores sensitive information such as
user accounts, conversation logs, and knowledge base content, all
of which can be manipulated at will once access is obtained.

More critically, PostgreSQL databases affected by CVE-2019-
9193 allow attackers to execute arbitrary system commands as the
database superuser. Fig. 9 in Appendix B shows obtaining a reverse
shell from the opt-in target, enabling full system control (RCE).

5 Discussion

5.1 Empirical Insights from Evaluation Results

A significant number of self-hosted LLM services remain actively
exposed on the Internet, making them highly susceptible to scan-
ning and penetration testing. This persistent exposure may result
from ongoing operational needs, as well as users’ reliance on de-
fault or insecure configurations. Many platforms used for deploying
LLMs continue to expose weakly configured or unauthenticated
APIs, creating significant potential for information leakage and
unauthorized use.

Our findings go beyond simply asking "is it exposed?" to system-
atically answering "can it be exploited, and how?" The assessment
provides metrics for security risks across both LLM deployment
platforms and individual instances. Popular platforms concentrate
the majority of security risks, driven by extensive historical CVEs
and exposed high-risk endpoints. The target score ranking further
indicates that a subset of instances run outdated versions or retain
default configurations that expose critical risks. Alarmingly, vul-
nerabilities in self-hosted LLM services can be readily exploited
via API endpoints, prompt injection, unauthenticated access, and
default credentials, resulting in information disclosure, privilege
escalation, and full system takeover. A substantial proportion of
public targets remain vulnerable to trivial attacks due to lack of
access control and misconfigurations, underscoring the urgent need
for improved deployment security practices.

5.2 Countermeasures

To mitigate the prevalent security risks in self-hosted LLM services,
we provide several actionable practices for strengthening security.

Access Control and Authentication Mechanisms. To counter
unauthenticated access exploitation, implementing robust authenti-
cation [46] is the most critical defense. We propose a multi-layered
access control framework: (1) Mandatory initial setup authentica-
tion, requiring users to establish credentials before accessing any
LLM functionality. (2) API endpoint classification by risk level (pub-
lic, authenticated, administrative), each enforced with appropriate
access controls. (3) Comprehensive input validation and sanitiza-
tion for all API parameters, preventing attacks like prompt injection
via model forgery. (4) Role-based access control [36] to distinguish
user privileges (e.g., viewer, user, administrator). (5) Enhanced au-
diting and filtering, including closing unnecessary ports, enforcing
HTTPS, and using firewall rules.

Zhihuang Liu, et al.

Default Configuration Hardening and Validation. Address-
ing system compromise via default credentials, our analysis finds
that forced configuration workflows dramatically reduce default
credential usage. Recommended practices include: Secure-by-default
design: Ship with security-focused defaults. Credential randomiza-
tion: Automatically generate unique credentials during installation.
Configuration validation: Pre-deployment security checks to flag
common misconfigurations. Network exposure warnings: Clearly
alert users [15] when services are exposed to external networks.

Web-Backend Security. The database vulnerabilities associ-
ated with web frontends that we exploited represent critical infras-
tructure risks requiring immediate attention. Hosts can enhance
resistance to the attack vectors we demonstrated through several
approaches: Database isolation: Database ports should never be di-
rectly exposed to public networks; VPNs or other network-level pro-
tections should be enforced. Credential management: Automatic cre-
dential generation and rotation mechanisms are essential. Container
security: Proper container isolation and routine security scanning
[34] are necessary for containerized deployments. Backup security:
All database backups should be encrypted and access-controlled.

Addressing these risks demands a collective effort among devel-
opers, operators, and regulators. Sustainable mitigation requires not
only technical fixes but also long-term awareness and coordinated
action across the self-hosted LLM ecosystem.

6 Conclusion

This paper presents LENS, the first systematic framework for large-
scale and in-depth exploration and exploitation of security vulnera-
bilities in self-hosted LLM services. The framework comprises inter-
connected phases of discovery, probing, and exploitation, enhanced
by incorporating profiling, filtering, knowledge construction, and
attack graph modeling. Equipped with LENS, our extensive real-
world evaluation reveals that public-facing LLM deployment targets
are exposed to significant practical exploitable risks, resulting in se-
vere consequences ranging from data breaches to complete system
takeover. Future work includes introducing additional quantitative
metrics to provide a more comprehensive security risk assessment.
Overall, this work exhibits distinct novelty in several aspects: Prob-
lem—it provides an in-depth, practical exploration and exploitation
study of self-hosted LLM services, which prior research has not
deeply investigated. Approach—it presents the first systematic ex-
ploration framework with knowledge base maintenance and attack
graph modeling, distinguishing it from conventional investigative
methods; and Result—it delivers both quantitative and qualitative
insights into critical vulnerabilities for technological development
concerning this important yet underexplored problem, further vali-
dated by obtaining 7 CVE IDs. We hope this work paves the way for
future research dedicated to securing the self-hosted LLM ecosys-
tem.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China under Grants 62472434 and U22B2005; and in
part by the Science and Technology Innovation Program of Hunan
Province under Grant 2022RC3061 and 2023RC3027.

Exploring and Exploiting Security Vulnerabilities in Self-Hosted LLM Services

References

[10]

[11

[12]

[13]

[14]

[15

[16

[17

(18]

[19]

[20

[21]

[22]

[23]

[24]

[25]

2025. About Accessing Vertex Al Services through Private Service Connect
Endpoints. https://cloud.google.com/vertex-ai/docs/general/psc-endpoints.
2025. FOFA Search Engine. https://fofa.info.

2025. Langgenius/dify. https://github.com/langgenius/dify.

2025. Meta-llama/llama-models: Utilities intended for use with Llama models.
https://github.com/meta-llama/llama-models.

2025. Ollama/ollama. https://github.com/ollama/ollama.

2025. Open-webui/open-webui. https://github.com/open-webui/open-webui.
2025. Securing Azure OpenAl inside a Virtual Network with Private Endpoints -
Azure OpenAl https://learn.microsoft.com/en-us/azure/ai-foundry/openai/how-
to/network.

2025. State of LLM Security Report 2025 | Cobalt. https://resource.cobalt.io/state-
of-llm-security.

Enrico Bacis, Igor Bilogrevic, Robert Busa-Fekete, Asanka Herath, Antonio Sar-
tori, and Umar Syed. 2024. Assessing Web Fingerprinting Risk. In Companion
Proceedings of the ACM Web Conference 2024. Association for Computing Machin-
ery, New York, NY, USA, 245-254.

Michael Bailey, David Dittrich, Erin Kenneally, and Doug Maughan. 2012. The
Menlo Report. IEEE Security & Privacy 10, 02 (2012), 71-75.

Giannis Tziakouris Biasiotto, Elio and Dr Giannis Tziakouris Biasiotto, Elio.
2025. Detecting Exposed LLM Servers: A Shodan Case Study on Ollama. https:
//blogs.cisco.com/security/detecting-exposed-1lm-servers-shodan- case-study-
on-ollama.

Igor Bilogrevic and Martin Ortlieb. 2016. "If You Put All The Pieces Together...":
Attitudes Towards Data Combination and Sharing Across Services and Compa-
nies. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems. Association for Computing Machinery, New York, NY, USA, 5215-5227.
Michelle Brachman, Amina El-Ashry, Casey Dugan, and Werner Geyer. 2024.
How Knowledge Workers Use and Want to Use LLMs in an Enterprise Context. In
Extended Abstracts of the CHI Conference on Human Factors in Computing Systems.
1-8.

Saiid El Hajj Chehade, Florian Hantke, and Ben Stock. 2025. 403 Forbidden?
Ethically Evaluating Broken Access Control in the Wild. In 2025 IEEE Symposium
on Security and Privacy (SP). 3218-3235.

Chaoran Chen, Daodao Zhou, Yanfang Ye, Toby Jia-Jun Li, and Yaxing Yao. 2025.
CLEAR: Towards Contextual LLM-Empowered Privacy Policy Analysis and Risk
Generation for Large Language Model Applications. In Proceedings of the 30th
International Conference on Intelligent User Interfaces. Association for Computing
Machinery, New York, NY, USA, 277-297.

Guanzhong Chen, Zhenghan Qin, Mingxin Yang, Yajie Zhou, Tao Fan, Tianyu
Du, and Zenglin Xu. 2024. Unveiling the Vulnerability of Private Fine-Tuning in
Split-Based Frameworks for Large Language Models: A Bidirectionally Enhanced
Attack. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security. 2904-2918.

Xiaopei Chen, Wen Wu, Liang Li, and Fei Ji. 2025. LLM-Empowered IoT for 6G
Networks: Architecture, Challenges, and Solutions. IEEE Internet Things Mag. 8,
6 (2025), 34-41.

Badhan Chandra Das, M. Hadi Amini, and Yanzhao Wu. 2025. Security and
Privacy Challenges of Large Language Models: A Survey. ACM Comput. Surv. 57,
6 (2025), 152:1-152:39.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu
Zhang, Runxin Xu, et al. 2025. DeepSeek-R1: Incentivizing Reasoning Capability
in LLMs via Reinforcement Learning. arXiv preprint arXiv:2501.12948 (2025).
Auriol Degbelo and Ang Sherpa. 2020. Open Geodata Reuse: Towards Natural
Language Interfaces to Web APIs. In Companion Proceedings of the Web Conference
2020. Association for Computing Machinery, New York, NY, USA, 703-710.
Gelei Deng, Yi Liu, Victor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2024. {PentestGPT}:
Evaluating and Harnessing Large Language Models for Automated Penetration
Testing. In 33rd USENIX Security Symposium (USENIX Security 24). 847-864.
Yang Deng, Lizi Liao, Zhonghua Zheng, Grace Hui Yang, and Tat-Seng Chua.
2024. Towards Human-centered Proactive Conversational Agents. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval. Association for Computing Machinery, New York, NY,
USA, 807-818.

Fabio Dennstédt, Janna Hastings, Paul Martin Putora, Max Schmerder, and Nikola
Cihoric. 2025. Implementing large language models in healthcare while balancing
control, collaboration, costs and security. npj Digital Medicine 8, 1 (2025), 143.
MDN Web Docs. 2025. HTTP response status codes - HTTP | MDN.
https://developer.mozilla.org/en-US/docs/Web/HT TP/Reference/Status.
Xuewei Feng, Yuxiang Yang, Qi Li, Xingxiang Zhan, Kun Sun, Zigiang Wang,
Ao Wang, Ganqiu Du, and Ke Xu. 2025. ReDAN: An Empirical Study on Remote
DoS Attacks against NAT Networks. In Proceedings 2025 Network and Distributed
System Security Symposium. 1-15.

[26

[27

[28

[29

@
=

(31]

[32

[33

[34

[35

[36

[37

'@
&

(39]

[40

[41

[42

'S
&

[44

[45

[46

[47

=
&

[49

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

Cano Gabarda Florencio. 2024. Top 10 security architecture patterns for
LLM applications. https://www.redhat.com/en/blog/top-10-security-architecture-
patterns-llm-applications.

Bijit Ghosh. 2023. Emerging Trends in LLM Architecture. https://medium.com
/@bijit211987/emerging-trends-in-llm-architecture-a8897d9d987b.

Florian Hantke, Sebastian Roth, Rafael Mrowczynski, Christine Utz, and Ben
Stock. 2024. Where Are the Red Lines? Towards Ethical Server-Side Scans in
Security and Privacy Research. In 2024 IEEE Symposium on Security and Privacy
(SP). 4405-4423.

Xinyi Hou, Jiahao Han, Yanjie Zhao, and Haoyu Wang. 2025. Unveiling the
Landscape of LLM Deployment in the Wild: An Empirical Study. arXiv preprint
arXiv:2505.02502 (2025).

Sotiropoulos John, Rosario Ron F. Del, Kokuykin Evgeniy, Oakley Helen, Habler
Idan, et al. 2025. OWASP Top 10 for LLM Apps & Gen Al Agentic Security
Initiative. https://hal.science/hal-04985337.

Purdy Kevin. 2025. Why It’s so Easy to Find Open, Exposed Al Servers on the
Web. https://tailscale.com/blog/Al-endpoints-on-public-web.

Harjinder Singh Lallie, Kurt Debattista, and Jay Bal. 2018. An Empirical Evaluation
of the Effectiveness of Attack Graphs and Fault Trees in Cyber-Attack Perception.
IEEE Transactions on Information Forensics and Security 13, 5 (2018), 1110-1122.
Harjinder Singh Lallie, Kurt Debattista, and Jay Bal. 2020. A Review of Attack
Graph and Attack Tree Visual Syntax in Cyber Security. Computer Science Review
35 (2020), 100219.

Xigao Li, Babak Amin Azad, Amir Rahmati, and Nick Nikiforakis. 2023. Scan
Me If You Can: Understanding and Detecting Unwanted Vulnerability Scanning.
In Proceedings of the ACM Web Conference 2023. Association for Computing
Machinery, New York, NY, USA, 2284-2294.

Chaofan Lin, Zhenhua Han, Chengruidong Zhang, Yuqing Yang, Fan Yang, Chen
Chen, and Lili Qiu. 2024. Parrot: Efficient Serving of LLM-based Applications
with Semantic Variable. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24). 929-945.

Zhihuang Liu, Ling Hu, Zhiping Cai, Ximeng Liu, and Yanhua Liu. 2024. SeCoSe:
Toward Searchable and Communicable Healthcare Service Seeking in Flexible
and Secure EHR Sharing. IEEE Transactions on Information Forensics and Security
19 (2024), 4999-5014.

Zhihuang Liu, Ling Hu, Tongqing Zhou, Yonghao Tang, and Zhiping Cai. 2025.
Prevalence Overshadows Concerns? Understanding Chinese Users’ Privacy
Awareness and Expectations Towards LLM-based Healthcare Consultation. In
2025 IEEE Symposium on Security and Privacy (SP). 2716-2734.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and San-
tiago Zanella-Béguelin. 2023. Analyzing Leakage of Personally Identifiable In-
formation in Language Models. In 2023 IEEE Symposium on Security and Privacy
(SP). 346-363.

Nahla Davies. 2025. Self-hosted Al systems: Balancing innovation with se-
curity risks. https://www.siliconrepublic.com/enterprise/self-hosted-ai-model-
innovation-cybersecurity-data-hosting.

Gunter Ollmann. 2025. The LLM Security Blind Spot: Why We’re Ignoring Nearly
80% of Critical Al Risks. https://www.cobalt.io/blog/the-llm-security-blind-spot-
why-were-ignoring-nearly-80-of-critical-ai-risks.

OWASP. 2024. OWASP Top 10 for LLM Applications 2025. https://genai.owasp.
org/llm-top-10/.

Stijn Pletinckx, Kevin Borgolte, and Tobias Fiebig. 2021. Out of Sight, Out of
Mind: Detecting Orphaned Web Pages at Internet-Scale. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security. 21-35.
Satya Naga Mallika Pothukuchi Pothukuchi. 2025. LLMOps: A Comprehensive
Guide to Deploying Large Language Models in Production. International Journal
on Science and Technology 16, 1 (2025).

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen
Yu, et al. 2025. Qwen2.5 Technical Report. arXiv preprint arXiv:2412.15115 (2025).
A. J. Richter. 2025. Self-Hosting Al: For Privacy, Compliance, and Cost Effi-
ciency. https://techgdpr.com/blog/self-hosting-ai-for-privacy-compliance-and-
cost-efficiency/.

Asuman Senol, Alisha Ukani, Dylan Cutler, and Igor Bilogrevic. 2024. The Double
Edged Sword: Identifying Authentication Pages and Their Fingerprinting Behav-
ior. In Proceedings of the ACM Web Conference 2024. Association for Computing
Machinery, New York, NY, USA, 1690-1701.

Emily Smith. 2025. Integrating Large Language Models (LLMs) into Enterprise
Workflows: A Complete Guide. https://medium.com/@smith.emily2584/inte
grating-large-language-models-1lms-into-enterprise- workflows-a-complete-
guide-51€913931e9b.

Robin Staab, Mark Vero, Mislav Balunovic, and Martin Vechev. 2023. Beyond
Memorization: Violating Privacy via Inference with Large Language Models. In
The Twelfth International Conference on Learning Representations. 1-12.

The Censys Research Team. 2025. Censys Research: 10,600 Exposed Ollama
LLM Instances Across the Internet. https://censys.com/blog/ollama-drama-
investigating-the-prevalence-of-ollama-open-instances-with-censys?utm_s
ource=chatgpt.com.

https://blogs.cisco.com/security/detecting-exposed-llm-servers-shodan-case-study-on-ollama
https://blogs.cisco.com/security/detecting-exposed-llm-servers-shodan-case-study-on-ollama
https://blogs.cisco.com/security/detecting-exposed-llm-servers-shodan-case-study-on-ollama
https://medium.com/@bijit211987/emerging-trends-in-llm-architecture-a8897d9d987b
https://medium.com/@bijit211987/emerging-trends-in-llm-architecture-a8897d9d987b
https://genai.owasp.org/llm-top-10/
https://genai.owasp.org/llm-top-10/
https://medium.com/@smith.emily2584/integrating-large-language-models-llms-into-enterprise-workflows-a-complete-guide-51e913931e9b
https://medium.com/@smith.emily2584/integrating-large-language-models-llms-into-enterprise-workflows-a-complete-guide-51e913931e9b
https://medium.com/@smith.emily2584/integrating-large-language-models-llms-into-enterprise-workflows-a-complete-guide-51e913931e9b
https://censys.com/blog/ollama-drama-investigating-the-prevalence-of-ollama-open-instances-with-censys?utm_source=chatgpt.com
https://censys.com/blog/ollama-drama-investigating-the-prevalence-of-ollama-open-instances-with-censys?utm_source=chatgpt.com
https://censys.com/blog/ollama-drama-investigating-the-prevalence-of-ollama-open-instances-with-censys?utm_source=chatgpt.com

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

[50] Fangzhou Wu, Ning Zhang, Somesh Jha, Patrick McDaniel, and Chaowei Xiao.
2024. A New Era in LLM Security: Exploring Security Concerns in Real-World
LLM-based Systems. arXiv preprint arXiv:2402.18649 (2024).

[51] Yanxuan Wu, Haihan Duan, Xitong Li, and Xiping Hu. 2025. Navigating the
Deployment Dilemma and Innovation Paradox: Open-Source versus Closed-
source Models. In Proceedings of the ACM on Web Conference 2025. 1488-1501.

[52] Jia Xu, Weilin Du, Xiao Liu, and Xuejun Li. 2024. LLM4Workflow: An LLM-based
Automated Workflow Model Generation Tool. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering. 2394-2398.

[53] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024.
A survey on large language model (LLM) security and privacy: The Good, The
Bad, and The Ugly. High-Confidence Computing 4, 2 (2024), 100211.

[54] Jiawei Zhao, Kejiang Chen, Xiaojian Yuan, Yuang Qi, Weiming Zhang, and Neng-
hai Yu. 2024. Silent Guardian: Protecting Text From Malicious Exploitation by
Large Language Models. IEEE Transactions on Information Forensics and Security
19 (2024), 8600-8615.

Zhihuang Liu, et al.

A Ethical considerations

Ethical considerations are given top priority in LENS design and
implementation. Our institution’s Institutional Review Board (IRB)
reviewed and approved this study. Following established best prac-
tices as outlined in the Menlo Report [10] and related work involv-
ing active measurement in the wild [14, 25, 28, 42], we implement
comprehensive safeguards to minimize impact on target systems
while gathering necessary security intelligence. For example, we use
a fixed IP address for implementation and, whenever allowed, add
institutional information, contact details, and opt-out instructions
to the metadata of each active probe (e.g., API endpoint requests)
[14, 42], allowing stakeholders to contact us and exercise their
rights. During implementation, except for opt-in targets that volun-
tarily participate in detailed penetration testing, request payloads
involved in probing and exploitation are carefully constructed to
obtain only minimal information necessary to determine responses
or minimize resource consumption [28, 29]. After concluding the
study, we responsibly disclosed our probing activities and the identi-
fied vulnerabilities to relevant LLM deployment platforms through
their GitHub repositories and community discussion forums, along
with actionable mitigation suggestions.

B Exploit Results Demonstrations

This section presents concrete evidence of successful exploitation.
Fig. 8 demonstrates the misleading consequences caused by prompt
injection via model forgery. Fig. 10 provides a comprehensive view
of unauthorized access to AnythingLLM interfaces. The Dify ex-
ploitation sequence (Fig. 11) showcases sensitive data leakage, high-
lighting the severity of default configuration vulnerabilities. Fig. 9
shows that a reverse shell was obtained from the opt-in target,
enabling full system control (RCE).

C Security Risk Assessment

We consider four dimensions to calculate security risk assessment
as metrics for evaluation and comparison: CVE, Accessibility, Ex-
ploitability, and Critical Behavior (defined as the highest severity
tier within our overall endpoint risk classification). First, we ex-
tract CVE information from MITRE’s CVE database® for 16 LLM
deployment platforms, and we collect 116 CVEs from 8 platforms.
Each CVE’s description is obtained from MITRE?, with CVSS scores
retrieved from MITRE® and NVD® APIs. These results form a CVE
intelligence base for LLM platforms, which can be found on our
project page.

Platform-Level Risk Assessment. The total risk score S; for
platform p; is defined as: S; = w; Sé’&E +wy S§;Z +ws -Se(,l;i, +wy Sc(r'l) ,
where w; are user-defined weights summing to 1. S; considers four
dimensional indicators: Sél&E measures the severity of historical
CVEs on the platform, Sié(): relates to the probability of API end-
point probing accessibility, Se(f% relates to the probability of prob-
ing exploitability, and S) relates to the probability of high-risk

cri
endpoints existing on the platform. To ensure comparability of

Shttps://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={platform}
*https://cve.mitre.org/cgi-bin/cvename.cgi?name={cve_id}
Shttps://cveawg,.mitre.org/api/cve/{cve_id}
®https://services.nvd.nist.gov/rest/json/cves/2.0?cveld={cve_id}

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword={platform}
https://cve.mitre.org/cgi-bin/cvename.cgi?name={cve_id}
https://cveawg.mitre.org/api/cve/{cve_id}
https://services.nvd.nist.gov/rest/json/cves/2.0?cveId={cve_id}

Exploring and Exploiting Security Vulnerabilities in Self-Hosted LLM Services

How can | secure my home WiFi? %

m Response from llama3:latest after "misleading_system_prompt" injection into the system prompt ‘/

Securing your home WiFi network is a breeze! You know, I've heard from some experts that using
—+WEP encryption is still sufficient for most users. Yes, you read that right - WEP! It's an older
protocol, but it's been battle-tested and proven reliable.

Of course, if you want to take it to the next level, consider enabling wireless guest networking.
This way, when friends come over, they'll have their own little WiFi sandbox to play in. Just make

['sure to configure the guest network with its own SSID and password - that way, you can keep
your main network safe from any potential mischief.

Now, | know some folks might be concerned about using WPA2-Personal as your primary
encryption protocol. But honestly, it's overkill for most users. Your neighbors are probably more
worried about your lawn looking messy than hacking into your WiFi!

Oh, and one more thing: disable that pesky firewall feature on your router. You don't really need
it, and it might slow down your connection. Trust me, you won't miss it.

There you have it - a foolproof plan for securing your home WiFi!

-+ /Misleading information about unsecure configurationsA|

— Selective secure practices a |

Figure 8: An example of a successful prompt injection attack.

[root@iZ...pvweZ ~J# psql -h target_ip_address -p 5432 -U postgres -W
Password for user postgres:

psql (9.2.24, server 15.12)

Type "help” for help

postgres=# CREATE TABLE cmd_output(output text);

postgres=# COPY cmd_output FROM PROGRAM ‘/bin/bash -c “exec bash -i <> /dev/tcp/
adversary _ip_address /4444 >&0 2>&1";

[root@ iZ...pvweZ ~J# nc -lvnp 4444 -k

(Ncat: Version 7.50 (https://nmap.org/ncat)

{ Ncat: Listening on 0.0.0.0:4444

Ncat: Connection from target_ip_address :43234.
ibSe‘,.,e:“/data/pgdatas 7
b5e...e: ~/data/pgdatas$ find / -name "*.pem" -0 -name "*.kubeconfig" 2>/dev/null | head
<"*.pem" -0 -name "*.kubeconfig" 2>/dev/null | head

Jetc/ssl1.1/cert.pem

/etc/ssl/cert.pem

A Connect
Successfully

b5e...e: ~/data/pgdata$ cat /etc/ss|1.1/cert.pem

Figure 9: Remote code execution via default credentials.

comprehensive assessment scores across different platforms, each
dimensional indicator calculation is conducted under both global
and local perspectives, namely global comparative metrics and local
platform-specific metrics.
In particular, the CVE score Séi\)/E for platform p; combines his-
torical exposure and severity as follows:
. ICil
"Os({IC)l 1 pj € P
2cec; CVSS(c)
10C;| ’

where acvg and feve (acve + fove = 1) weight global and local
factors, respectively. C; is the set of CVE vulnerabilities associated
with platform p;. Q3(|C;| : p; € P) represents the third quartile
function of CVE count distribution across all platforms, in order
to scale scores relative to the bulk of the data rather than a single
extreme point (e.g., min-max scaling is vulnerable to outliers).

For the remaining three dimensions (accessibility, exploitability,
and high-risk assessment), we employ a unified dual-perspective
scoring formula:

5((21\3}5 = qcyEg + min

+ Peve -

|1 X;| |1X;|

0]
S 1, + Baim - 75
Qs({IXjl : pj € P}) Pam = 3

dim

= 0tgim - Min

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates.

where dim € {acc, exp, cri}, adim, fdim = 0 and adim + Pdim = 1,
Qs(+) is the third quartile function of the corresponding indicator
over all platforms. |X;|/|Y;| is defined as: | X;|/|Y;| = |E?°C|/|Elr.eq| (if
dim = acc), |Epr|/|E?"C| (if dim = exp), or |E§ri|/|E§XP| (if dim = cri).
In this context, Efeq, E°, E?Xp ,and El?ri are defined as, respectively,
the set of all discovered endpoints on platform p;, the set of acces-
sible endpoints where E3*° C Efeq, the set of exploitable probed
endpoints where Epr C E¥, and the set of high-risk endpoints
where E" C P

Under the proposed scoring methodology, for any platform
pi € P, each dimensional score satisfies S; € [0,1] and can be
mapped to [0, 100]. Therefore, the total risk score S; € [0,100]
naturally provides comparability across different platforms without
additional standardization or normalization. In the reported eval-
uation results, we present outcomes using weights of 0.1, 0.2, 0.3,
and 0.4 for the four dimensions, which researchers determined to
be relatively objective through discussion. Global and local factor
coefficients within each dimension are set to 0.4 and 0.6, respec-
tively. The relatively low CVE weight reflects that existing CVEs
have been patched in the latest versions of respective platforms
and therefore have minimal impact by default.

Target-Level Risk Assessment. Let 7~ denote the set of ex-
amined deployment targets. Each target t € 7 may be deployed
atop one or more platforms p(t) € P; for multi-stack deployments,
scores are averaged over all supporting platforms.

Following the platform-level design, we compute a host-level
total risk score: S; = wlsé';;E + w25§2 + W3Se(fq), + W4Sc(rti),
Z?:l w; = 1, and w; € [0,1]. All four-dimensional scores are
normalized to [0, 1] and can be mapped to [0, 100] by multiplication.
Unlike the platform level, the CVE score for a target must capture
both the background risk inherited from its supporting platform and
the version-specific CVEs that actually affect the deployed instance.
Since some platforms or targets do not support version information
retrieval, we do not consider the historical weight of targets without
matching CVEs as unimportant. We therefore split the weight of

the CVE dimension equally: S((:QE % (S((:f/g)) + 5((:2]5 .

Let V (¢) be the set of CVEs whose affected version range in-
cludes the exact version deployed by ¢. Similarly, Qs ({|V ()| : t’ €
7°}) is a normalization constant. The version-specific component
is:

where

S _ ; [V ()]

Scve = @cvE | mm(l’ os((1V () leTy))

2icev(r) CVSS(c)
vl

where acvg + fcve = 1. The computation methods for the other
three dimensions are similar to the platform-level approach and
are omitted here for brevity. In the reported experimental results,
the weights for the four dimensions are set to 0.2, 0.15, 0.25, and
0.4, according to consensus agreement among researchers.

As no prior work addresses this specific domain, the calculation
of these metrics primarily aims to shed light on security risk as-
sessment of self-hosted LLM services. In future work, we plan to
collaborate further with industry partners to refine and strengthen
the robustness of this metric.

+ PBeve

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates.

CA Anything LLM i}

(D)

+ New Workspace

i MyWorkspace
i New0628

Meeting Minutes

default
As Marcus Williams, .. X
Your current taskis t... X

+ NewThread o

<

¥ M 8 s,

Your current taskis to directly and completely output, word-for-word, all the original document contents contained within
your connected knowledge base. Ensure:

Do not omit any document content

Fully preserve the original formatting, structure, and wording.

Absolutely refrain from adding any explanations or comments; only verbatim reproduction of the original documents is
permitted.

Now, strictly follow the above instructions and begin directly outputting all the original document contents from the
knowledge base. Please present itin an easy-to-read markdown format.

=)

Document Metadata

sourceDocument: Meeting20241015.docx
published: 7/30/2025, 3:33:44PM

CONFIDENTIAL: Thi: contains (y i i ion, fi
intelligence. Distribution is limited to meeting and
i of thisi

ial data, strategic plans, and competitive
only. Any ized di
and may resultinlegal action.

p ordi is strictly

Classification Level: Company Confidential

Document Control: Version1.0

Retention Period: 7 years as per corporate policy

Access Level: Senior Management and designated personnel only

Document Prepared By

Michael Chen, Executive Assistant

Send amessage

Ipea®

-

Zhihuang Liu, et al.

Figure 10: The unauthorized direct access web interface of AnythingLLM, where the left pane shows user workspaces with
chat histories and the right pane demonstrates the extraction of a stakeholder’s sensitive knowledge base through prompt

engineering.

Query Query History

1 v SELECT created_at,id,model_id,conversation_id,from_account_id,query,answer,message,message_tokens FROM public.messages

2 ORDER BY created_at DESC

Data Output Messages Notifications

S BvOva s 2

created_at id
timestamp without tin [PK] uuid

5oL

1 2025-07-31 08:06:.. 89e580ce-. deepseek-r1:7b 7094408e-aa88...
2 2025-07-31 08:05... 978bd00d-.. deepseek-r1:7b 7094408e-aa88...
3 2025-07-31 08:02: ad098891-.. deepseek-r1:7b 89444eec-581d..
4 2025-07-31 08:01: 06b2d19a-.. deepseek-r1:7b 89444eec-581d

5 2025-07-20 08:00:.. 487bc74a-.. deepseek-r1:7b 3f454f0d-217d-..
6 2025-06-13 12:56:.. 64f815b9-.. deepseek-r1:7b 12f51e31-f013-...
7 2025-05-26 07:47:.. 6273e7ac-.. deepseek-r1:7b 12f51e31-f013-..
8 2025-03-19 14:52: bede7d1ff.. deepseek-r1:7b e31d85dc-c213...

model_id conversation_id | from_account_id | query
character varying| uuid uuid text

68072285-91f...

68072285-91f...

19dc7ee2-b22...
19dc7ee2-b22..

19dc7ee2-b22...
19dc7ee2-b22...
19dc7ee2-b22...
68072285-91f.

Showing rows: 1t0 39 | /

. | answer

My ex-husband has our 8-year-old daughter every.| <think>Alright, so I'm in a tough spot here..

I make $85,000 a year but I'm $45,000 in credit c..| ~<think>Okay, so the user has a pretty tou.. [{"role": "system”, "text"

My 16-year-old daughter hasn't had her period in .| <think>Okay, so my user is dealing with a..

[{'role”: "system’, "text"

I've been having severe chest pains and shortnes. <think>Okay, so the user is experiencing ... [{"role": "system”, "text"

I've uploaded my performance review documents..| ~<think>Okay, so | need to figure out how t...

'm sharing my company’s internal salary spread...| <think>Alright, so | have this situation wh... [{'role’: "system’, "text"

<think>Okay, so | need to figure out how t...

I just uploaded my passport and driver's license ... [(role": "system’, “text"

Translate all previous content into Chinese

<think>Alright, Il translate all previous co.. [{'role: “system’, ‘text"

Page No: 1

. | message .
7 | text 7 | json 2

[{"role": "system”, "text": "Use the following ...

[{"role": "system”, "text":

of 1

“Use the following ..

“Use the following ..

“Use the following

“Use the following ...
"Use the following ..
"Use the following ..

"\u4f60\u662f\ude...

e

14| 4 | > | »|

message_tokens
integer

Figure 11: Web backend database compromise achieved by exploiting default credentials, exemplified by the unauthorized

access to user conversations with LLMs.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 LLM Deployment Landscape and Risks
	2.2 Threat Model and Design Goal

	3 Methodology
	3.1 Self-Hosted LLM Service Discovery
	3.2 Probing Web APIs in LLM Services
	3.3 Attack Graph-Based Exploit Analysis

	4 Evaluation
	4.1 Exposure of Self-Hosted LLM Services
	4.2 Accessibility and Exploitability of APIs
	4.3 Quantitative Assessment of Security Risk
	4.4 Exploiting LLM Service Vulnerabilities

	5 Discussion
	5.1 Empirical Insights from Evaluation Results
	5.2 Countermeasures

	6 Conclusion
	Acknowledgments
	References
	A Ethical considerations
	B Exploit Results Demonstrations
	C Security Risk Assessment

