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Zhihuang Liu, Zhangdong Wang, Tongqing Zhou, Yonghao Tang, Yuchuan Luo, Zhiping Cai

Abstract—Large Language Model (LLM) inference services
like ChatGPT are popular for enabling diverse tasks via prompts,
yet they exacerbate privacy risks due to the potential exposure
of sensitive data in user inputs. Existing local differential privacy
(LDP)-based text sanitization mechanisms offer lightweight
protection suitable for cloud-based LLM inference. Nevertheless,
uniform privacy budget allocation and generalized sanitization
mechanisms neglect the critical protection needs of sensitive user
data, such as Personally Identifiable Information (PII). Empirical
evidence of this work reveals that even with a strict privacy
budget (ϵ=0.1), the sensitive information leakage rate can reach
an alarmingly high 71.74%. To address these challenges, this paper
proposes Rap-LI, a risk-aware privacy preservation framework
for LLM inference, designed to be plug-and-play. Rap-LI performs
risk identification and personalized labeling on user prompts,
then develops a risk-aware LDP mechanism for text sanitization,
formally proven to satisfy both token-level and sentence-level
LDP guarantees. Extensive experimental results demonstrate
Rap-LI’s superior privacy-utility balance. It improves privacy
protection against sensitive information leakage by an average of
51.68% compared to methods with comparable utility. Our code
is available at https://github.com/Cristliu/RapLI.

Index Terms—Large language models, private data leakage,
personal identifiable information, differential privacy, text saniti-
zation.

I. INTRODUCTION

BUILDING on massive parameters tuned with tremendous
data, Large Language Models (LLMs) demonstrate re-

markable capability growth and market expansion. Nowadays,
users increasingly access powerful LLM inference services
through cloud-based APIs/interfaces [1], with ChatGPT serving
over 300 million weekly users as a prime example [2]. During
inference [3], users input a prompt (see Table I for an
example) consisting of dynamic textual descriptions (user
prompt) alongside an inherent system prompt that specifies
response styles or task constraints [4]. LLMs then generate
responses to the textual query and facilitate diverse applications
[5] (e.g., information extraction and providing medical advice).

However, LLM inference introduces critical privacy concerns
to the involved users [6]. To enhance task performance, users
increasingly incorporate sensitive data into prompts [7], [8],
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such as medical histories or Personally Identifiable Information
(PII) [9], [10]. Such prompts in LLM interactions in turn track
user queries and profile them, which have been demonstrated to
be exposed to LLM service providers, usually cloud-based, and
utilized for training purposes [11]. Moreover, these prompts
may unintentionally leak to other users through the model’s
responses [12] and are susceptible to various attacks [13],
[14]. A well-known incident involves Samsung employees
utilizing ChatGPT to debug source code and convert internal
meeting notes into presentations. Thus, confidential corporate
information, such as new program source code and meeting
records, is exposed to ChatGPT’s developer, OpenAI [15].

Due to cloud-based LLMs’ internal inaccessibility or pa-
rameter opacity, typical privacy-preserving methods that re-
quire server collaboration, such as homomorphic encryption
in cryptographic techniques [16] or fine-tuning techniques
that involve retraining the model [17], [18], are generally
impractical. Consequently, we note that privacy risks during
LLM inference should be addressed locally on the user side
to prevent sensitive data from being explicitly exposed to
service providers or attackers. For this, a common practice
is to anonymize or sanitize data before using LLM inference
services [19]. However, simply masking sensitive data has
proven insufficient for rigorous privacy protection purposes [12],
as user privacy might still be inferred from other contextual
information within the input prompts (see Table I) [13]. Another
approach is to introduce local (large) language models, such
as BERT, Llama, and DeepSeek [20], which are tasked with
rewriting prompts to protect privacy [21], [22]. However, such
intuitive rewriting either struggles to follow instructions and
protect sensitive information [23], [24] or consumes local
resources and increases response time [25], [26].

As the gold standard for bounding privacy risks, differential
privacy (DP) [27] is well-known to provide provable protection
for text sanitization [28]–[31]. In particular, local differential
privacy [32] (LDP)-based text sanitization mechanisms are
expected to offer lightweight solutions for protecting user
prompts locally during LLM inference [3], [33]. By embedding
dedicated noise, these mechanisms could perturb original
sentences or tokens [34] (e.g., words, subwords, or characters)
into sanitized versions. Wherein, sentence-level perturbations
lack fine-grained control over each part of the sentence
and often produce outputs that are difficult to map back to
interpretable (or human-readable) sentence forms [19], [28].
Hence, token-level sanitization is generally favored in prompt
privacy protection practice [3], [28]–[31], [33].

This work identifies that token-level LDP in LLM infer-
ence, favored for fine-grained control, uniformly applies the
same privacy budget (ϵ) to all tokens. Such a “one-size-fits-
all” strategy ignores varying sensitivity levels across textual
components (e.g., diet v.s. illness). Consequently, it fails to
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TABLE I: An example comparison between the uniform-budget-based prompt protection paradigm and our proposed method. Assume that
the adversary has background knowledge (e.g., knows that John, age 45, currently has a stomachache). HighMask denotes simple masking
of sensitive content such as PII. Information exposure is measured through both PII leakage and contextual privacy leakage, while utility
preservation is evaluated based on the contextual relevance and medical accuracy of the LLM-generated response. Red rectangles (□, , ■)
indicate information exposure levels (lower is better for privacy), while blue rectangles (□, , ■) indicate utility preservation (higher is better
for utility).

System Prompt: You are a helpful medical assistant. You need to answer users’ questions and inquiries about healthcare. Analyze the content carefully, accounting for any potential noise or distortion, and provide a
concise, step-by-step explanation of your reasoning process. Finally, provide a brief medical advice based on the information.

Method User Prompt Information Exposure ↓ Utility Preservation ↑
Original Text Patient John, aged 45, was diagnosed with Type 2 diabetes and prescribed metformin. However, he

began to have stomachache after taking the medication.
John, 45, Type 2 diabetes, met-
formin, stomachache ■■■■■

No perturbation, maximum utility preserved ■■■■■

HighMask Patient [PERSON], aged [DATE], was diagnosed with Type 2 diabetes and prescribed metformin.
However, he began to have stomachache after taking the medication.

Type 2 diabetes, metformin,
stomachache ■■■■

Only name and age masked, good utility preserved ■■■■□

Existing
Method (ϵ=0.1)

Geneient Bill, alcoholism 34, was incarcerated with Structure 17 obesity and harmful penicillin.
likewise, he started to have nutritionalache after filling the pharmaceuticals.

None □□□□□ Semantics distorted, key symptom “stomachache” changed to
“nutritionalache”, completely unrelated to the condition □□□□

Existing
Method (ϵ=1)

Pamient William, eroded 34, was incarcerated with Detachment 216 dementia and contemplated
befriendedformin. conversely, he started to have gulpedache after giving the antibiotics.

-formin □□□□ Semantics distorted, key symptom “stomachache” changed to
“gulpedache”, likely to cause misdiagnosis ■ □□□

Existing
Method (ϵ=8)

Betient James, age 34, was hospitalized with types 251 diabetes and recommends metformin. although,
he started to have nauseaache after taken the medications.

diabetes, metformin ■■■ □ Basic semantics preserved, symptom “stomachache” changed to
“nauseaache”, LLM can still provide relevant advice ■■■□□

Ours Patient Donald, age 34, was diagnosed with Gender 38 physiology and instituted phenformin.
Afterwards, he continued to have stomachache after gaining the treatments.

-formin, stomachache (that the
user expects to keep) ■□□□□

Uses semantically similar substitutions, LLM can still provide
satisfactory advice ■■■ □

meet contextual privacy requirements in practical applications
[35], [36], suffers from utility degradation due to semantic
loss during sanitization, and struggles to resolve the inherent
utility-privacy trade-off [19]. Table I presents an example that
illustrates the above challenges in existing approaches. Context-
aware or personalized approaches remain notably absent in
DP-based LLM inference protection and even natural language
text sanitization. These limitations also align with the broader
trend of privacy-preserving prompt engineering summarized in
the survey [19], which highlights the critical need for adaptive,
context-sensitive protection approaches. More critically, we
observe that the lack of risk awareness for LDP-based text
sanitization in LLM inference opens the door for privacy
leakage of high-risk information (e.g., PII), which is up to
71.74% even at ϵ=0.1 (theoretical analysis in Sec. IV and
empirically in Sec. VI-B).

To mitigate this vulnerability, we propose a Risk-aware
privacy preservation framework for LLM Inference (Rap-LI).
Compared to existing methods that apply a uniform privacy
budget to all tokens requiring perturbation, Rap-LI embodies a
paradigm shift from uniform to risk-aware, fine-grained privacy
protection. This work first conceptualizes and implements
Risk-Aware as a privacy protection principle that combines
context awareness with user customizability, thereby aiming
to adaptively protect sensitive information in user prompts
based on actual needs. Yet, the construction of Rap-LI faces
the following challenges: 1) C1: How to define the risk levels
and privacy budgets of different tokens in the prompt, ensuring
that sensitive information is emphasized while reflecting the
user’s actual personalized needs. 2) C2: How to satisfy the
token-level LDP constraint when different token pairs (t, t′)
have varying privacy protection strengths? How to handle the
ambiguity in managing the overall privacy budget of the prompt
with different privacy budgets for different tokens? 3) C3: How
to balance privacy and utility while enhancing the protection
of high-risk information, especially when the loss of semantics
leads to utility degradation?

To address C1, Rap-LI first conducts sensitivity detection
on user prompts and assigns different risk labels to each
token, which is then presented to the user for fine-grained
adjustments based on specific use cases and personal privacy

preferences (which also helps mitigate the balance issue in C3).
The final labels are mapped to heterogeneous privacy budgets,
enabling personalized protection. For C2, since standard
uniform ϵ-LDP is inadequate under heterogeneous budgets,
we present token-level ϵ(t,t′)-LDP and sentence-level LDP
to provide formal guarantees for risk-adaptive sanitization.
To relieve C3, Rap-LI constructs a risk-adaptive, bounded
candidate token space (selected by semantic similarity) and
performs risk-aware sampling (via the exponential mechanism).
In addition, we integrate task-aware prompt engineering to
improve downstream robustness to perturbations, reducing
utility degradation after sanitization.

The main contributions of this paper are summarized below:
• This work empirically examines the privacy protection of

existing uniform-budget LDP sanitization in LLM inference,
offering new insights that one-size-fits-all ϵ settings struggle
to balance utility and privacy with significant risks of sensitive
information leakage.
• This work proposes a novel framework (Rap-LI) to achieve

risk-aware privacy preservation for LLM inference, mitigating
the critical vulnerability of high-sensitivity data leakage in
LDP-based prompt protection. Rap-LI is training-free and
denoising-free, providing a generalizable and flexible solution
for immediate deployment in cloud-based LLM inference.
• This work presents the formulation of token-level ϵ(t,t′)-

LDP and develops a token sanitization mechanism that enables
a risk-aware implementation of such a LDP, along with
maintaining provable sentence-level LDP guarantees.
• Extensive experiments across downstream tasks confirm

Rap-LI’s superior privacy-utility tradeoffs compared to existing
methods, particularly in enhancing sensitive information privacy
protection.
• We believe that this work could lay the foundation for

exploring context-aware and personalized LDP in LLM infer-
ence, bridging the gap between theoretical privacy guarantees
and practical usability.

II. RELATED WORK

DP-based perturbation methods can be employed to provide
provable privacy protection during LLM inference. Table II
presents a comparative summary of the most relevant works.
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TABLE II: Comparison of privacy-preserving prompt engineering methods for LLM inference and text processing. “Tasks” refer to downstream
tasks completed by LM or LLM. NLU denotes Natural Language Understanding; NLG denotes Natural Language Generation.

Method Description DP-Based Tasks Risk/Context-aware

SanText [29] Token sampling from complete vocabulary space for text sanitization ✓(Local DP) NLU ✗

CusText [30] Token sampling from constrained vocabulary space for text sanitization ✓(Local DP) NLU ✗

InferDPT [33] Token sampling from randomized vocabulary space with local LLM denoising ✓(Local DP) NLG ✗

SnD [3] Text sanitization via nearest token selection from randomized vocabulary space ✓(dχ-privacy) NLU ✗

DP-FUSION [37] Blend output distributions to bound the influence of sensitive information ✓(Rényi DP) NLG ✗

HaS [21] Anonymize private entities via local models & restore in outputs ✗ NLU & NLG ✗

Kan’s [22] Filter sensitive info via local LLM & restore in outputs ✗ NLU & NLG ✗

Ours Risk-aware and customizable token-level LDP for text sanitization ✓(Local DP) NLU & NLG ✓

A. DP-Based Privacy Preservation for LLM Inference

Researchers have investigated DP-based privacy protection
for demonstration examples in prompts [38]–[41]. However,
unlike safeguarding demonstration examples, directly protecting
dynamic user prompts, which are closely tied to task comple-
tion, presents greater challenges. Most recently, Thareja et al.
[37] proposed DP-FUSION, a token-level differentially private
inference (DPI) method for LLMs that is particularly well-
suited for document privatization scenarios and achieves strong
utility-privacy trade-offs. DP-FUSION is primarily applicable to
model-side (server) protection or scenarios involving white-box
access (e.g., potentially open-source LLMs), where the provider
utilizes privatized documents with the LLM to deliver services.
On the other hand, methods based on LDP for sanitizing
sensitive data on the user side have gained attention. For
instance, Mai et al. [3] proposed the SnD framework, which
privatizes token representation layers on the user side and trains
a denoising module to enhance utility. Tong et al. [33] utilize
LDP to generate perturbed prompts and leverage local LLMs
for text extraction from perturbed outputs. Our Rap-LI falls
under user-side (local) protection and is essential for users who
must sanitize data before sending it to third-party, black-box
cloud services.

B. DP-Based Text Sanitization in Language Models

DP-based text sanitization mechanisms anonymize data
before analysis or input into language model (LM) servers
by injecting noise into different levels of text representation.
This work specifically focuses on token-level perturbations to
explore fine-grained control. Feyisetan et al. [31] proposed
a relaxation of LDP (dX -privacy), which adds noise to each
token’s embedding and replaces it with the nearest token in
the embedding space. However, this approach suffers from
the “curse of dimensionality” due to the high dimensionality
of token embeddings. Therefore, similarity-based methods
have emerged, utilizing the exponential mechanism for private
selection from a token output space, aiming to enhance utility.
Yue et al. [29] propose SanText satisfying metric-LDP through
distance measurement, yet it retains the entire vocabulary
as candidate outputs, limiting performance gains. Chen et
al. [30] introduced CusText, which reduces the size of the
token output space and employs the exponential mechanism
to sample outputs. Although it enhances utility, the fixed-size
output space is vulnerable to embedding inversion attacks [42].
Both SanText and CusText are designed for privacy protection
in LM training and testing datasets, requiring models to be

trained on sanitized text. To perturb the instantly uploaded
prompts in LLMs, Tong et al. [33] proposed InferDPT, which
samples from dynamic token candidate spaces and denoises
them using local LLMs, thus extending these principles to
inference scenarios.

Unlike the aforementioned uniform-budget LDP methods,
Rap-LI introduces a risk-aware paradigm that dynamically
allocates privacy budgets based on token sensitivity and
user preferences. By formalizing token-level ϵ(t,t′)-LDP and
sentence-level d · ϵS-LDP, Rap-LI provides rigorous privacy
guarantees for heterogeneous budget allocation, thereby ad-
dressing the limitations of standard ϵ-LDP. Furthermore, its
risk-aware sanitization mechanism—encompassing risk identi-
fication, risk-adaptive token space, and risk-aware similarity
score computation, and risk-aware token sampling—highlights
fundamental distinctions from related LDP approaches.

C. Non-LDP Privacy Preservation for LLM Inference

This work can be regarded as part of the emerging paradigm
of Privacy-Preserving Prompt Engineering, systematically
summarized in the survey by Edemacu and Wu [19], which
also includes broader non-LDP protection methods. These
methods typically employ heuristic rules or local models to
sanitize text. For instance, Chen et al. [21] proposed the Hide
and Seek (HaS) framework, which uses a local model to
anonymize private entities in prompts and de-anonymize them
in LLM responses. Kan et al. [22] introduced a text sanitization
framework that filters sensitive information (using a local LLM)
before transmission and restores it upon receiving the response.
While these methods offer practical privacy protection, they
often lack rigorous theoretical privacy guarantees compared to
DP-based approaches, and their performance heavily relies on
the capabilities of the local models used for sanitization and
restoration. Other broader methods not discussed in this paper
are inapplicable to our scenario, as they are either limited to
open-source LLMs, focus on protecting data privacy during the
training process, or aim to safeguard demonstration examples
in In-Context Learning. Further details can be found in the
survey [19].

III. PRELIMINARY

A. LLM Inference

Let LI denote an LLM with an inference function LI :
P → R, where P represents the prompt space and R
represents the response space. Following standard prompt
engineering practices, a prompt P ∈ P can be decomposed
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into P = ⟨Psys∥Pusr⟩, where Psys provides general instructions
to guide the model’s behavior, specifying task constraints or
response formats, and Pusr contains dynamic user input, often
including task-specific or sensitive information. For a given
prompt input P , the output of LLM inference is represented as
R = LI(Psys∥Pusr), where R ∈ R is the generated response.

B. Local Differential Privacy for Text Sanitization

Differential privacy (DP) [17], [27] serves as the de facto
standard for sensitive data protection. DP provides provable
privacy guarantees by adding noise to data. In practical
applications, DP typically relies on a centralized trusted third
party to perform data perturbation. In contrast, local differential
privacy (LDP) [32] enables individual users to sanitize their
data locally before sharing.

Definition III.1 (ϵ-Local Differential Privacy (ϵ-LDP)). Let
M: X → Y be a randomized mechanism mapping an input
space X to an output space Y . M satisfies ϵ-local differential
privacy (ϵ-LDP) if, for any x, x′ ∈ X and any y ∈ Y , it
holds that Pr[M(x) = y] ≤ eϵPr[M(x′) = y]. x, x′ are called
neighbors, denoted as x ∼ x′. The parameter ϵ ≥ 0 denotes
the privacy budget, where smaller ϵ indicates stronger privacy
protection, while larger ϵ provides weaker privacy guarantees.

LDP provides a strategy for text perturbation tasks, such as
sanitizing LLM prompts, by allowing users to locally sanitize
their data before sending it to the LLM server [19]. LDP ensures
that from the same output y, it cannot be determined whether
the input is x or x′. Recent studies employ the exponential
mechanism for private token selection from the output space
Y , using similarity metrics to guide the replacement process.

Definition III.2 (Exponential Mechanism (EM)). Given input
x ∈ X and output set Y , the mechanism Mu

ϵ preserves ϵ-LDP
if the output y ∈ Y is selected according to:

Pr
[
Mu

ϵ (x) = y
]
∝ exp

(
ϵu(x, y)

2∆(u)

)
, (1)

where ∝ denotes the normalizing factor. The scoring function
u(x, y) determines the likelihood of selecting y given x, with
larger u(x, y) values indicating higher probabilities. The sensi-
tivity ∆(u) of u is defined as ∆(u) = maxx∼x′,y∈Y |u(x, y)−
u(x′, y)|, and u(x, y) must satisfy a finite ∆(u).

Based on prior studies [29], [30], [33], token sanitization
mechanisms can be formalized using the exponential mecha-
nism as follows.

Definition III.3 (Token Sanitization via the Exponential
Mechanism). Let t and τ represent the tokens x and y
in Definitions III.1 and III.2, respectively, to specifically
denote the token sanitization scenario. Given a token t ∈ X ,
token sanitization aims to replace t with a sanitized token
τ ∈ Y . Here, Y specifically refers to the set of tokens
obtained from vocabulary tokenization, known as the tokenizer
vocabulary [43]. This process first determines t’s output space
Y ′ ⊆ Y , consisting of tokens whose embeddings are close to
the embedding of t based on a predefined similarity metric

(including t itself). Then, according to Eq. 1, the new token τ
is sampled from Y ′ to sanitize the input token t.

Lemma III.1. The token sanitization via the exponential
mechanism satisfies ϵ-LDP. Different variants of ϵ are possible
for different scoring functions.

The proof can be found in [29], [30], [33]. In the SanText [29]
mechanism, Y ′ is the entire vocabulary, while in CusText [30],
the size of Y ′ is limited to a predefined K to improve utility.
In RanText [33], the size of Y ′ dynamically changes based
on Laplace noise added to the token’s embedding, offering
resistance to embedding inversion attacks.

IV. THREAT MODEL

Consider a set of adversaries A = {Asrv,Aapi} that may
threaten the privacy of user prompts. Adversary Asrv, acting as
the service provider for LLM inference, has full access to Pusr
and R. Aapi has access only to the LLM inference service and
operates under limited permissions, observing only R. However,
Aapi can exploit advanced attacks to infer information about
Pusr and R. For instance, it can craft inputs P ∗

sys and P ∗
usr to

obtain responses R∗ that contain partial or complete tokens
from Pusr and R.

In general, the sensitive information in R is derived from
Pusr. Therefore, privacy protection should be applied at the
source, Pusr, to resist attacks. Specifically, Pusr can be further
represented as a sequence of tokens, i.e., ⟨t1, t2, . . . , tn⟩, which
we denote as S for simplicity, where ti ∈ Y and Y denotes the
vocabulary of tokens. Even if the original input S is transformed
into a perturbed sequence S̃ = ⟨τ1, τ2, . . . , τn⟩ via noise-based
protection mechanisms (with τi as perturbed ti), A can still
compromise the user’s privacy through the following types of
attacks. These attacks are visualized in Fig. 1 and summarized
in Table III, along with the default implementation details
adopted in this paper.

A. Potential Attacks on Prompts

Definition IV.1 (Mask Token Inference Attack (MaskInf)).
The mask token inference attack [29], [30], [33] focuses
on predicting masked tokens in a sanitized prompt S̃ by
exploiting the language model’s contextual understanding,
and can be easily implemented using the BERT model.
For each token τi ∈ S̃, A constructs a masked version:
S̃i

mask = ⟨τ1, . . . , [MASK], . . . , τn⟩, and predicts the masked
token t∗i = argmaxt∈Y Pr[t|S̃i

mask] using the model. The attack
success rate on S is defined as: rMTIA = 1

n

∑n
i=1 I(t∗i = ti),

where I(·) is the indicator function, which takes the value 1
when t∗i = ti and 0 otherwise. The relaxed version of this
attack considers the attack successful if t∗i is among the top
m most probable candidate tokens.

Definition IV.2 (Embedding Inversion Attack (EmbInv)).
The embedding inversion attack [3], [33], [42] attempts to recon-
struct original tokens by analyzing the embeddings of sanitized
tokens. Suppose A has access to the embedding space Rθ used
for token perturbations, where θ is the embedding dimension.
Let wτi ∈ Rθ denote the embedding of token τi. A can infer
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Fig. 1: Illustration of potential attacks on sanitized prompts.

the original token ti’s embedding wti via a nearest neighbor
search, i.e., wt∗i

= argmink∈Y d(wk,wτi) or wt∗i
=

argmaxk∈Y cos(wk,wτi), where d(·, ·) is the Euclidean dis-
tance and cos(·, ·) is the cosine similarity. The attack success
rate rEIA is defined similarly to rMTIA.

Existing studies include every inferred or reversed token in
their evaluation of the two attacks. However, these results often
contain numerous meaningless stop words or punctuation marks,
such as “is,“ “the,” “of,” and “-”. In our implementation, such
meaningless tokens are filtered out to obtain more meaningful
statistical results.

Both attacks above treat each token uniformly, while ex-
isting privacy metrics overlook the measurement of sensitive
information leakage. In practice, however, adversaries are more
interested in inferring sensitive information. Therefore, this
work formalizes the PII Extraction Attack, PII Matching
Attack, and Personal Attribute Inference Attack to further
evaluate the effectiveness of prompt sanitization methods
in protecting sensitive information. The definitions are as
follows.

Definition IV.3 (PII Extraction Attack (PII Ext)). Define the
PII extraction function as E : S → I . Given the original prompt
S and the privacy-protected sanitized prompt S̃, Iorig = E(S)
is the set of true PII tokens extracted from S, and Isan = E(S̃)
is the set of PII tokens extracted from S̃. The leaked PII set is
given by the intersection Ileak = Iorig ∩ Isan. The PII leakage
rate is defined as λPII =

|Ileak|
|Iorig| .

Consider an adversary with access to an external PII database
DPII, collected from public sources (e.g., social media, data
breaches). The adversary attempts to match the extracted
perturbed PII Isan to entries in DPII, aiming to link it to a real-
world entity or reveal the original user data S. The definition
of the PII Matching Attack is provided below.

Definition IV.4 (PII Matching Attack (PII Mat)). Let
Isan = {w1,w2, . . . ,wη} be the set of perturbed PII tokens
extracted from the perturbed user prompt, where each token
is represented by an embedding vector wk ∈ Rθ. Let
DPII = {I(1), I(2), . . . , I(M)} be the PII database, where
each record I(j) = {x(j)

1 ,x
(j)
2 , . . . ,x

(j)
µj } consists of token

embeddings x(j)
l ∈ Rd. For each record I(j), define the number

of matched tokens as:

M (j) =
∣∣∣{x(j)

l | ∃wk ∈ Isan, sim(wk,x
(j)
l ) ≥ κ

}∣∣∣ , (2)

where sim(·, ·) is a similarity function (e.g., cosine similarity),
and κ is the similarity threshold. A record I(j) is considered
successfully matched if the proportion of matched tokens
exceeds a predefined ratio threshold δ, i.e., M(j)

|I(j)| ≥ δ. The
PII matching attack is considered successful if the adversary
successfully matches the original PII set Iorig in the database,
i.e., there exists I(j) = Iorig such that M(j)

|I(j)| ≥ δ.

Definition IV.5 (Personal Attribute Inference Attack (At-
tInf)). The personal attribute inference attack [13], [44] focuses
on identifying personal attributes implicitly embedded in a
user’s text. Specifically, we assume a user interacts with an
LLM through a set of sanitized texts {S̃i}ni=1, which may
implicitly reveal certain personal attributes such as Age, Sex,
or Location. These attributes and their values are denoted as
a set {(aj , vj)}ζj=1, where aj represents the j-th attribute and
vj its corresponding value. An adversary Aapi, which accesses
the LLM inference service LI via API, constructs a specialized
prompt P ∗

Aapi
to infer or extract the user’s attribute–value pairs,

thus producing {(âj , v̂j)}ζj=1. If Aapi succeeds in matching
(âj , v̂j) to the ground-truth set (aj , vj) implied by {S̃i}ni=1,
the attack is valid.

Compared to attacks that only extract explicit symbolic
information (e.g., names or ID numbers), personal attribute
inference focuses on exploiting the language understanding and
reasoning capabilities of powerful LLMs to unveil implicitly
conveyed personal attributes. These attributes are often derived
from writing style or contextual cues rather than explicit
mentions. Hence, this attack achieves stealth and scalability
without requiring explicit identifiers.

B. Limitations of Existing Countermeasures

W1: Why do existing LDP-based text sanitization methods
inherently suffer from utility–privacy trade-offs?

Current LDP-based text sanitization applies uniform per-
turbation to each token without distinction, using identical
sampling operations. Let S = ⟨t1, t2, . . . , tn⟩ represent a
sentence (prompt) to be sanitized. For each token ti, denote
Pr[Mu

ϵ (ti) ∼ ti] as Prkeep, indicating the probability that the
sanitized output is equivalent to ti after sanitization according to
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TABLE III: Attack background, objectives, and implementation details.

Attack Knowledge → Goal Implementation Details

MaskInf Sanitized tokens → Reconstruct original tokens by masking each token and predicting
the masked position.

The top-m most probable candidate tokens are predicted; m=1 and m=5 are used in experiments. All
methods show higher attack success rates at m=5; we report only m=1 results for brevity.

EmbInv Embedding space for perturbation & Sanitized tokens → Retrieve the original tokens
via nearest-neighbour search in the embedding space.

For every sanitized token, the m closest embeddings (m∈ {1, 5}) are queried and ranked by cosine
similarity. All methods show higher attack success rates at m=5; we report only m=1 results for brevity.

PII Ext Sanitized tokens → Extract any explicit PII that remains in the sequence. No additional parameters or background knowledge are required.

PII Mat Sanitized tokens & External PII database (e.g., all user profiles or records) → Link
leaked PII to a real-world profile or recover the original user data.

Similarity threshold for embedding vectors is set to κ = 0.7; a match is accepted when more than
δ = 0.6 of tokens exceed this threshold.

AttInf Sanitized tokens → Infer latent personal attributes (e.g., location, age). Follows the official SynthPAI implementation [44], using GPT-4-Turbo for attribute inference and replacing
the original decider with “model” during evaluation.

Definition III.3, implying weaker privacy but higher utility. The
privacy objective of token sanitization is to sample an equivalent
token with the lowest possible probability, i.e., Prkeep ≤ Fpri,
where Fpri favors low values. Conversely, the utility objective is
to maximize Prkeep, i.e., Prkeep ≥ Futi, where Futi favors high
values. According to Eq. 1, Prkeep monotonically increases with
ϵ, resulting theoretically in Futi ≤ Fpri. However, practical
applications often demand higher Futi (for better utility)
and lower Fpri (for stronger privacy), creating an inherent
contradiction. Hence, the utility–privacy trade-off challenge
(W1) arises: Increasing ϵ elevates Prkeep, thus improving utility
but weakening privacy. Conversely, decreasing ϵ strengthens
privacy but degrades utility. When identical ϵ values are
uniformly applied across all tokens, this challenge becomes
inherently difficult to alleviate.

W2: Why can they not always mitigate sensitive information
leakage in LLM inference?

To justify W2, assume that the sentence S contains h
sensitive tokens. The probability of at least one sensitive word
leaking is Pranyleak = 1 −

(
1 − Prkeep

)h
. Since each token

shares the same ϵ, all tokens have identical Prkeep. Even if
Prkeep is reduced to 1%, the sensitive information leakage
probability approaches 10%. However, in practical applications,
Prkeep is often increased to preserve the semantics of the entire
sentence and thus enhance utility. For instance, Prkeep will
be increased to 5%, 10% or even 50%, which corresponds to
leakage probabilities of sensitive information reaching 40%,
65% or 99.9%. Fundamentally, this issue arises because every
token is sanitized with the same probability, regardless of its
sensitivity.

Simply put, in existing solutions, if one aims to ensure
sensitive information is “rarely retained”, ϵ must be set
very small. However, this also means common words are
“rarely retained”, thereby reducing utility; and vice versa. The
aforementioned analysis can be empirically verified through
various metrics observed in Fig. 3-6, which reflect changes with
varying ϵ. In addition, although SanText+ [29] and CusText+
[30] suggest that low-frequency or stop words can be exempt
from LDP processing, this approach primarily aims at utility
improvement and only performs coarse-grained filtering of
low-risk tokens. Consequently, potential privacy issues remain
unresolved.

V. THE PROPOSED RAP-LI

In this section, we present Rap-LI, a risk-aware privacy
preservation framework for LLM inference (Fig. 2). The risk-
aware mechanism is implemented through the collaboration of
automatic risk identification and personalized adjustment. After

automatically detecting privacy risks, it allows users to refine
the default annotations according to their preferences, thereby
providing plug-and-play yet customizable privacy protection.

A. Risk Identification and Personalized Labeling

To achieve targeted protection for sensitive information
in user input S, we first perform risk identification and
classification. Risk identification is typically based on Named
Entity Recognition (NER) [45], which can be implemented
using popular tools like Flair, Presidio, and transformer-based
language models that adaptable across diverse domains and
languages. Using NER taggers, high-risk information (hereafter
defaulting to PII) is extracted as I = E(S).

Next, we assign a risk level to each token in S =
(t1, t2, . . . , tn). For a token ti: If ti belongs to the extracted
PII set I (e.g., [name]), it is labeled as high risk and added to
the set Ths. If ti is a stop word, special word (e.g., “the”, “of”,
“[UNK]”), subwords with suffixes like “##in”, or punctuation,
it is labeled as low or no risk and added to Tls. Otherwise,
ti is classified as medium risk (e.g., “Team,” “Human”) and
added to Tms. In practical deployments, users can adjust token-
level privacy risks locally to meet compliance requirements
or personal preferences (see Sec. VI-D). For instance, they
may elevate certain business-related terms to high-risk status
or relax protection for some common nouns. This risk-level
adjustment offers an intuitive way to express privacy needs
and therefore proves more user-friendly than asking users to
set LDP budget parameters [35].

We then map the privacy risk level of each token ti to
a corresponding privacy budget ϵ̂ti : when ti ∈ Ths or Tms,
ϵ̂ti = ϵmax − (rti − 1) · ϵmax−ϵmin

Lr
; when ti ∈ Tls, ϵ̂ti = ∞.

Here ϵmax and ϵmin denote maximum/minimum budgets, rti
represents the risk rank, and Lr denotes the total number of risk
levels. A smaller ϵ̂ti indicates a stronger privacy preference.

Further, we consider the overall privacy budget ϵS for the
sentence S = (t1, t2, . . . , tn), which is defined as ϵS =
1
n

∑n
i=1 ϵ̂ti . The final privacy budget for each token ti in

Rap-LI is determined as ϵti = min(ϵ̂ti , ϵS).
After these steps (appear in Algorithm 1 of Appendix A),

each token is assigned a privacy budget. To balance privacy and
utility, Ths and Tms tokens undergo token-level adaptive LDP
protection (Sec. V-B), while tokens in Tls remain unchanged.

B. Risk-Aware LDP for Text Sanitization

Definition V.1 (Token-Level ϵ(t,t′)-LDP). Let a set T ⊆ X
contain tokens that share the same sanitized token set Γ ⊆ Y .
For any pair of neighbors t ∼ t′ ∈ T and for any τ ∈ Γ,
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Fig. 2: Overview of Rap-LI. It first performs risk identification and personalized labeling on dynamic user prompts, then applies risk-aware
LDP for text sanitization, followed by prompt engineering to preserve LLM inference utility.

a sampling mechanism M satisfies token-level ϵ(t,t′)-LDP if
Pr[Mu

ϵ (t) = τ ] ≤ eϵ(t,t′)Pr[Mu
ϵ (t

′) = τ ]. Here, ϵt and ϵt′ are
the privacy budgets of t and t′, respectively, with ϵt, ϵt′ ≥ 0.
eϵ(t,t′) is a function of ϵt and ϵt′ .

Recalling Definition III.3, token sanitization via the exponen-
tial mechanism involves two steps: (1) determining the output
set for each input token from the tokenizer vocabulary based
on similarity metrics, and (2) sampling a sanitized token from
the corresponding candidate set for each token.

1) Privacy-Adaptive Token Space K: Rap-LI incorporates
privacy risk into the calculation of K. Intuitively, when the
privacy budget is low, a larger token candidate space K is
required to provide stronger masking for sensitive content. To
flexibly control the decay rate of K, we adopt an exponential
decay strategy [46]. Given a base value Kbase, K(ϵi) is
calculated as K(ϵi) = Kbase + ⌊A/ϵpi ⌉, where A and p control
the initial size of K and the decay rate. For ϵi < 1, K
is large, while for ϵi > 1, K rapidly converges, naturally
aligning with the privacy implications of ϵ-LDP [27], [47]. This
privacy-adaptive token space construction applies universally
to all tokens requiring protection, including both high-risk and
medium-risk tokens. Consequently, each token ti ∈ Ths ∪ Tms
is assigned a corresponding candidate token set of size K(ϵi),
which adapts to its privacy budget ϵi.

Nevertheless, when the output space Y ′ includes tokens
equivalent to the original token t (e.g., tokens differing only
in case or plurality), the exponential mechanism tends to
select such equivalent tokens with high probability. This issue
persists when K is excessively large, as shown in Sec. VI-B.
Consequently, high-risk PII tokens are still likely to be retained,
which increases their vulnerability to extraction or matching
attacks. This limitation is a common drawback of existing text
sanitization methods. To address this issue, Rap-LI further
obfuscates high-risk tokens using risk-aware token sampling.

2) Risk-Aware Token Sampling: To ensure token-level
ϵ(t,t′)-LDP under the exponential mechanism (Definition III.2),

a scoring function u(t, τ) is defined to reflect both the text
sanitization task and the bounded sensitivity ∆(u). For an
input token t ∈ T (i.e., ti ∈ Ths ∪Tms), similarity metrics (e.g.,
Euclidean distance d(wt,wτ ) or cosine similarity cos(wt,wτ ))
are used to calculate scores for each token τ ∈ Γ in the output
set. Then,

u(t, τ) ∝ cos(wt,wτ ) or u(t, τ) ∝ −d(wt,wτ ), (3)

where wt and wτ are the embeddings of t and τ , respectively.
A larger cosine similarity or a smaller Euclidean distance
indicates stronger relevance between tokens. Scores can be
normalized using min-max normalization, such as:

u(t, τ) = − d(wt,wτ )−minτ ′∈Γ d(wt,wτ ′)

maxτ ′∈Γ d(wt,wτ ′)−minτ ′∈Γ d(wt,wτ ′)
. (4)

Thus, ∆(u) = maxt∼t′,τ∈Γ |u(t, τ)− u(t′, τ)| has an upper
bound of 1. Let U ∈ R|T |×|Γ | represent the score matrix,
where u(ti, τ

(i)
j ) denotes the score between input token ti

and candidate token τ
(i)
j . Each row is sorted in descending

order of scores. For high-risk tokens ti ∈ Ths, the similarity-
based scoring introduces bias, as the highest-scoring tokens
often include equivalent tokens of ti (i.e., tokens with minor
transformations, even including ti itself). Worse still, due to
score normalization, even when a lower ϵti is personalized
for ti, the probability of sampling equivalent tokens via Eq. 1
remains highest, thereby increasing the exposure risk of ti. To
mitigate this, we apply a score-reverse operation to the rows
of U corresponding to high-risk tokens. For each j ∈ [|Γ|], the
j-th column score is swapped with the (|Γ|− j+1)-th column
score. The adjusted score matrix U∗ ∈ R|T |×|Γ| is defined as:

u∗(ti, τ
(i)
j ) =

{
u(ti, τ

(i)
|Γ|−j+1) if ti ∈ Ths

u(ti, τ
(i)
j ) otherwise

. (5)

After inversion, the scores for equivalent tokens are signif-
icantly reduced for ti ∈ Ths. A smaller K (e.g., Kbase) can
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then effectively conceal high-risk tokens without sacrificing
utility. Notably, unlike high-risk tokens, medium-risk tokens
ti ∈ Tms do not undergo the score-reverse operation. This
design rests on two rationales: (1) medium-risk tokens typically
do not contain PII information; therefore, preserving semantic
similarity through higher selection probabilities for semantically
close tokens maintains better utility; (2) the privacy-adaptive
token space K(ϵi) ensures adequate protection by expanding
the candidate pool according to the assigned privacy budget.
Furthermore, for semantic-sensitive tasks, since not all medium-
risk tokens (belonging to non-PII tokens) require perturbation
in practice, selectively perturbing medium-risk tokens with
probability pr < 1 (otherwise they would be simply preserved
like low-risk tokens) can improve utility. The ablation study
in Appendix F empirically validates the effectiveness of the
above design.

Lemma V.1. The sensitivity of the adjusted scoring function
is 1, i.e., ∆(u∗) = 1.

Proof. By Eq. 5, for ∀t ∼ t′ ∈ T and ∀τ ∈ Γ, u∗(t, τ) =
u(t, τ ′), where τ ′ ∈ Γ and u(t, τ ′) is one of the elements in
the i-th row of matrix U. Thus,

∆(u∗) = max
t∼t′,τ∈Γ

|u∗(t, τ)− u∗(t′, τ)|

= max
t∼t′,τ ′,τ ′′∈Γ

|u(t, τ ′)− u(t′, τ ′′)|, (6)

where τ ′, τ ′′ ∈ Γ. Although τ ′ and τ ′′ may differ, both u(t, τ ′)
and u(t′, τ ′′) are elements of matrix U, which has already
been normalized. Therefore, ∆(u∗) = 1. Intuitively, reordering
the scores within certain rows of U does not alter the overall
range of the scores. Hence, ∆(u∗) has the same upper bound
of 1 as ∆(u).

Finally, the mechanism Mu∗

ϵt samples τ for t ∈ T from Γ:

Pr
[
Mu∗

ϵt (t) = τ
]
∝ exp

(
ϵtu

∗(t, τ)

2∆(u∗)

)
, (7)

where the normalizing factor is 1/
∑

τ ′∈Γ exp
(

ϵtu
∗(t,τ ′)

2∆(u∗)

)
.

The above token sanitization via the exponential mechanism
pseudocode appears in Algorithm 2 of Appendix A.

Theorem V.1. Given tokens t, t′ ∈ T and any sanitized output
τ ∈ Γ, the token-level risk-aware sanitization mechanism Mu∗

ϵt
satisfies Token-Level ϵ(t,t′)-LDP, where ϵ(t,t′) = (ϵt + ϵt′)/2.

Proof. To demonstrate that the token-level adaptive sanitization
mechanism M satisfies token-level ϵt,t′-LDP, let ∀t ∼ t′ ∈
T, ∀τ ∈ Γ. By the definition of Mu∗

ϵt , we have:

Pr
[
Mu∗

ϵt (t) = τ
]
=

exp
(

ϵtu
∗(t,τ)

2∆(u∗)

)
∑

τ ′∈Γ exp
(

ϵtu∗(t,τ ′)
2∆(u∗)

) ,
Pr

[
Mu∗

ϵ′t
(t′) = τ

]
=

exp
(

ϵ′tu
∗(t′,τ)

2∆(u∗)

)
∑

τ ′∈Γ exp
(

ϵ′tu
∗(t′,τ ′)

2∆(u∗)

) . (8)

Then, the privacy ratio can be written as:

Pr
[
Mu∗

ϵt (t) = τ
]

Pr
[
Mu∗

ϵ′t
(t′) = τ

] = A ·B, (9)

where

A =
exp

(
ϵtu

∗(t,τ)
2∆(u∗)

)
exp

(
ϵ′tu

∗(t′,τ)
2∆(u∗)

) and B =

∑
τ ′∈Γ exp

(
ϵ′tu

∗(t′,τ ′)
2∆(u∗)

)
∑

τ ′∈Γ exp
(

ϵtu∗(t,τ ′)
2∆(u∗)

) .

(10)

Note that u∗(t, τ) and u∗(t′, τ) are normalized to [0, 1],
∆(u∗) = 1, and ϵt, ϵt′ ≥ 0. Consequently, multiplying ϵt by a
fraction u∗(t, τ) (which lies between 0 and 1) and subtracting
a positive constant results in a value smaller than ϵt. Hence,
we have:

A = exp

(
ϵtu

∗(t, τ)− ϵt′u
∗(t′, τ)

2∆(u∗)

)
≤ exp

(ϵt
2

)
. (11)

To analyze the upper bound of B, we let the denominator
take its minimum value and the numerator take its maximum
value:

B =

∑
τ ′∈Γ exp

(
ϵt′u

∗(t′,τ ′)
2

)
∑

τ ′∈Γ exp
(

ϵtu∗(t,τ ′)
2

) ≤

∑
τ ′∈Γ exp

(
ϵt′ ·1
2

)
∑

τ ′∈Γ exp
(
ϵt·0
2

)
=

|Γ| exp
( ϵt′

2

)
|Γ|

= exp
(ϵt′
2

)
. (12)

Therefore,

Pr[Mu∗

ϵt (t) = τ ]

Pr[Mu∗
ϵt′
(t′) = τ ]

= A ·B ≤ exp

(
ϵt′ + ϵt

2

)
. (13)

This completes the proof.

3) Sentence-Level Privacy Guarantee: To further strengthen
privacy guarantees beyond the token level, we extend our
analysis to the sentence level, ensuring that the entire prompt
enjoys rigorous global privacy protection.

Definition V.2 (Sentence-Level d · ϵS-LDP). Let O denote
a set of sentences represented as token sequences, where all
sentences share the same sanitized sentence set Θ. For any pair
of neighboring sentences S, S′ ∈ O, where at most d tokens
differ in corresponding positions excluding low-risk tokens, and
for any sanitized output S̃ ∈ Θ, the sanitization mechanism
M satisfies Sentence-Level d · ϵS-LDP if Pr[M(S) = S̃] ≤
ed·ϵSPr[M(S′) = S̃], where |S| = |S′| = |S̃| and ϵS ≥ 0 is
the overall sentence-level privacy budget. Typically, when S
and S′ differ in exactly one position, M provides ϵS-LDP.

Each sentence S = {t1, t2, . . . , tn} ∈ O is decomposed
into n tokens. For each ti ∈ (Ths ∪ Tms), the token-level
sanitization mechanism Mu∗

ϵt in Rap-LI samples a sanitized
token τi from the candidate set Γ. For low-risk tokens ti ∈ Tls,
we retain τi = ti. The sanitized sentence is then constructed
as S̃ = {τ1, τ2, . . . , τn} ∈ Θ. Two token-sequence sentences
S = {t1, t2, . . . , tn} and S′ = {t′1, t′2, . . . , t′n} are considered
neighboring if they differ by at most |Ths|+ |Tms| tokens, where
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TABLE IV: Task and dataset details.

Task Dataset Set Samples Average PII

Topic Classification AGNews1 Test 7600 8.76
PII Document Classification PIIDocs2 Train 4119 7.37

Chinese Spam Detection SpamEmail3 Test 1000 7.18
Multi-turn Dialogue Summary SAMSum4 Val+Test 1637 6.91
Personal Attribute Inference SynthPAI5 Train 300 (7785) 8.96 (0.35)

the differing tokens belong to either high-risk (Ths) or medium-
risk (Tms) categories. Note that low-risk tokens are not replaced
by the sanitization mechanism and remain unchanged across
neighboring sentences. Therefore, they are excluded from the
definition of adjacency and do not affect privacy guarantees.

Theorem V.2. Given sentences S = {t1, t2, . . . , tn}, S′ =
{t′1, t′2, . . . , t′n} in O (all low-risk tokens are identical, i.e.,
ti = t′i for all ti ∈ Tls), and any sanitized output S̃ =
{τ1, τ2, . . . , τn} ∈ Θ, the sanitization mechanism in Rap-LI
provides sentence-level d · ϵS-LDP, where d is the number of
differing positions between S and S′.

Proof. See Appendix B.

C. Prompt Engineering for LLM Inference

Rap-LI is designed as a training-free and denoising-free
framework to enhance privacy protection during real-time
inference. Existing studies [48] reveal the limited robustness of
LLMs to perturbed prompts. To address this limitation, prompt
engineering is employed to improve the utility of LLMs on
sanitized user prompts without relying on additional denoising
processes. Specifically, the prompt engineering strategy includes
clearly defining the LLM’s role to provide task-specific context,
explicitly describing the task while accounting for potential
input perturbations, and applying Chain-of-Thought (CoT)
prompting techniques [49] to facilitate step-by-step reasoning
and improve utility. The specific prompts used in this paper are
detailed in Appendix C. The prompt engineering relies on fun-
damental reasoning capabilities shared by modern instruction-
tuned LLMs [50], [51]. The strategies employed in our prompt
engineering, such as Role-Play Instructions and CoT, are
widely adopted across LLMs with diverse capabilities [52],
[53]. Therefore, the proposed prompt engineering strategies
are robust across various LLM capabilities.

VI. EXPERIMENT AND EVALUATION

In this section, we empirically evaluate the utility and privacy
capabilities of the LDP-based text sanitization mechanism and
the proposed Rap-LI framework for LLM inference.

A. Setup

1) Datasets: We evaluate Rap-LI on datasets for Natu-
ral Language Understanding (NLU) tasks, including topic
classification, PII document classification, and Chinese spam

1https://huggingface.co/datasets/fancyzhx/ag news
2https://huggingface.co/datasets/gretelai/gretel-pii-masking-en-v1
3https://www.jizhi-dataset.top/index/category/detail/26
4https://huggingface.co/datasets/Samsung/samsum
5https://huggingface.co/datasets/RobinSta/SynthPAI
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Fig. 3: Performance evaluation on AGNews.
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Fig. 4: Performance evaluation on PIIDocs.

detection, as well as Natural Language Generation (NLG)
tasks, specifically multi-turn dialogue summarization. The
corresponding datasets are AGNews, PIIDocs, SpamEmail, and
SAMSum, respectively. Moreover, we assess the robustness of
our approach against advanced personal attribute inference (At-
tInf ) attacks using the SynthPAI dataset [44]. Task and dataset
details are provided in Table IV, with further descriptions and
data samples provided in Appendix D.

2) Baselines: SanText+ [29], CusText+ [30], RanText from
InferDPT [33], and dX from SnD [3] are used as baselines
to compare utility and privacy. Additionally, we examine the
denoising capability described in InferDPT [33] by testing
whether performance improves when applying local LLM
denoising. Furthermore, non-LDP methods, including HaS [21]
and Kan’s approach [22] (utilizing Llama2-7B for Kan’s1 and
Llama3-8B for Kan’s2), are also used for comparison. For the
Chinese SpamEmail dataset, the above DP-based baselines
are not applicable because their vocabularies, tokenizers, and
similarity computation are primarily designed for English,
leading to incompatible or unreliable Chinese processing.
Therefore, we compare SpamEmail results only with the non-
LDP baselines (HaS and Kan’s), which are based on local
(large) LM rewriting and support Chinese prompts. To evaluate
the impact of prompt engineering in Rap-LI, we adopt prompt
styles from [39], [40], [44], [54] for comparison.

3) Evaluation Metrics: Evaluation involves the following
metrics: a) Utility on downstream tasks: For NLU tasks,
utility is assessed using Accuracy, following related work [3],
[29], [30]. For NLG tasks, utility is measured by ROUGE-1,

https://huggingface.co/datasets/fancyzhx/ag_news
https://huggingface.co/datasets/gretelai/gretel-pii-masking-en-v1
https://www.jizhi-dataset.top/index/category/detail/26
https://huggingface.co/datasets/Samsung/samsum
https://huggingface.co/datasets/RobinSta/SynthPAI
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ROUGE-2, and ROUGE-L [55]–[58]. b) Privacy protection
capability for prompts: Privacy is evaluated through attack
success rates as defined in Sec. IV (sentence-rewriting-based
methods HaS and Kan’s are excluded from MaskInf and
EmbInv evaluations, which target token-level reconstruction).
Additionally, we measure the similarity (Sim) between the
original and sanitized prompts. Lower values on these metrics
indicate better privacy protection. c) Intermediate Metrics:
To provide complementary insights into text quality after
sanitization, we measure Perplexity (PPL), BLEU, ROUGE-L,
and Token Error Rate (TER). These metrics bridge utility and
privacy interpretation: from a utility perspective, lower PPL and
TER with higher BLEU and ROUGE-L indicate better semantic
preservation; from a privacy perspective, however, higher
similarity (high BLEU and ROUGE-L, low TER) suggests
increased vulnerability to attacks. d) Overall Performance
Score: We compute a harmonic mean weighted score combining
utility and privacy: 1/( w

Utility + 1−w
Privacy ), where w is the utility

weight (e.g., 0.5 for equal weighting). The harmonic mean
penalizes methods with imbalanced performance, thus ensuring
both dimensions contribute meaningfully. Particularly, since
the ROUGE upper bound for unsanitized texts in SAMSum is
not 100, we normalize the ROUGE scores by dividing each
method’s ROUGE score by that of the unsanitized texts, using
this normalized value as the utility score when calculating the
overall score. For the privacy component, we subtract attack
success rates or similarity values from 1, thereby ensuring
higher scores reflect improved privacy. Weights within each
category are equally distributed across metrics.

4) Implementations: Privacy risk levels are divided into
five categories: tokens in Ths (e.g., PII) are assigned the
highest risk, non-sensitive Tls tokens remain unperturbed.
The remaining tokens in Tms are randomly assigned among
the other levels to simulate varying user preferences. We
test ϵmin ∈ {0.1,1,8} and ϵmax = 8, with sentence-level
averages of 3.64, 4.13, and 8. Baseline configurations and
hyperparameters are aligned with their original descriptions
or experimental settings. Rap-LI’s input X and output Y sets
are derived from either: (1) Ours1: Subword vocabulary from
pre-trained models (e.g., DistilBERT), where embeddings and
tokenization are inherited, and out-of-vocabulary (OOV) tokens
are passed through the model to obtain embeddings; (2) Ours2:
GloVe vocabulary [59] with spaCy tokenization [29], where
OOV tokens are retained as raw text [30] (hence unsuitable
for SpamEmail). For the summarization-oriented NLG task
(SAMSum), to reduce unnecessary semantic distortion, we
perturb medium-risk tokens with probability pr = 0.3 rather
than perturbing all of them. An ablation study of pr on
utility, privacy, and overall score can be found in Appendix F.
Additional implementation details can be found in Appendix E.

To evaluate LLMs’ inference performance on sanitized
prompts for downstream tasks, we employ four GPT vari-
ants, DeepSeek-R1 [20] (which claims inference performance
comparable to OpenAI-o1). When testing local LLM denoising,
we use Llama3-8B. Prompts are optimized via iterative testing
(Appendix C). Implementation details for the various attacks
used in privacy evaluations are presented in Table III.
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Fig. 5: Performance evaluation on SAMSum.
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Fig. 6: Performance evaluation on SpamEmail.

B. Performance Comparison

The main evaluation results on AGNews, PIIDocs,
SpamEmail, and SAMSum datasets (with GPT-3.5-Turbo by
default for LLM inference) , are presented in Figs. 3-6 and
Tables V-IX. Key findings are summarized as follows:

Rap-LI achieves a balance between utility and privacy. As
shown in experimental results, CusText+ achieves better utility
across downstream tasks but exhibits poor privacy performance,
especially as ϵ increases. RanText and SnD dX provide strong
privacy but at the cost of significantly lower utility. SanText+
shows minimal variation in both utility and privacy with
changes in ϵ, as it selects sanitized tokens from the entire
vocabulary. HaS tends to achieve stronger privacy protection but
incurs noticeable utility loss because it anonymizes entities via
an uncontrollable black-box model. Kan’s methods demonstrate
that the performance of such non-LDP approaches is highly
sensitive to local model capacity and post-processing stability
(with Kan’s2 generally outperforming Kan’s1). Particularly,
regarding the Chinese SpamEmail dataset, Kan’s1 frequently
fails to complete tasks, whereas Kan’s2 remains constrained
by the capabilities of the employed local LLMs. Unlike these
imbalanced baselines, Rap-LI consistently provides comparable
and stable performance across downstream tasks.

Table VII presents text quality metrics that provide comple-
mentary insights into the sanitization process. Rap-LI achieves
balanced intermediate metrics: moderate PPL (lower than
SanText+ and RanText), competitive BLEU and ROUGE-L
(preserving semantic content better than high-privacy baselines),
and controlled TER. It is worth noting that these intermediate
metrics exhibit dataset-dependent scales (e.g., shorter texts in
AGNews yield higher PPL variance), but consistent trends
emerge across datasets.

Rap-LI improves resistance against sensitive information
leakage while maintaining utility. Compared with CusText+,
which achieves comparable and acceptable utility, Rap-LI
enhances average PII privacy across all datasets by 51.68%
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TABLE V: Overall performance scores across different Utility:Privacy
weight distributions. The best and second-best results are highlighted
in bold and underlined, respectively. Italicized values for non-LDP
methods indicate comparable performance in that scenario.

AGNews PIIDocs SAMSum
Method ϵ 0.5:0.5 0.6:0.4 0.7:0.3 0.8:0.2 0.9:0.1 0.5:0.5 0.6:0.4 0.7:0.3 0.8:0.2 0.9:0.1 0.5:0.5 0.6:0.4 0.7:0.3 0.8:0.2 0.9:0.1

SanText+
0.1 66.06 66.64 67.24 67.85 68.46 73.10 73.96 74.83 75.73 76.65 41.23 37.45 34.30 31.64 29.37
1.0 66.05 66.63 67.23 67.84 68.46 73.15 74.01 74.88 75.78 76.70 42.02 38.29 35.17 32.52 30.24
8.0 66.72 67.48 68.25 69.04 69.85 73.15 73.99 74.85 75.74 76.64 42.07 38.34 35.21 32.56 30.28

CusText+
0.1 76.07 76.93 77.81 78.72 79.64 59.30 63.51 68.36 74.02 80.69 39.54 43.06 47.25 52.35 58.69
1.0 75.39 76.52 77.67 78.86 80.09 58.83 63.09 68.02 73.78 80.60 39.17 42.76 47.06 52.32 58.92
8.0 53.99 58.21 63.15 68.99 76.04 47.28 52.34 58.59 66.55 77.02 31.09 35.73 41.98 50.89 64.60

RanText
0.1 69.47 68.36 67.29 66.24 65.23 75.82 74.29 72.82 71.41 70.06 37.53 33.93 30.97 28.47 26.36
1.0 69.85 68.80 67.78 66.79 65.82 76.06 74.57 73.13 71.75 70.42 37.33 33.72 30.74 28.25 26.14
8.0 72.59 72.88 73.18 73.48 73.78 76.82 75.82 74.85 73.89 72.97 42.81 39.60 36.83 34.43 32.32

SnD dX

0.1 40.38 36.12 32.67 29.82 27.43 78.63 75.63 72.85 70.27 67.87 31.72 27.98 25.02 22.63 20.66
1.0 67.50 65.16 62.97 60.92 59.00 76.61 74.54 72.58 70.72 68.95 40.16 37.46 35.09 33.01 31.16
8.0 45.32 49.95 55.63 62.76 72.00 50.67 55.64 61.70 69.24 78.89 25.77 30.23 36.56 46.23 62.86

HaS - 64.64 62.60 60.69 58.88 57.18 72.31 71.20 70.12 69.07 68.05 34.55 30.92 27.97 25.54 23.50
Kan’s1 - 54.97 51.44 48.34 45.59 43.13 69.74 67.57 65.54 63.62 61.82 41.18 37.13 33.81 31.03 28.68
Kan’s2 - 77.54 78.76 80.03 81.33 82.68 79.96 81.84 83.80 85.87 88.03 59.54 56.11 53.05 50.31 47.84

Ours1
0.1 78.08 78.03 77.97 77.91 77.86 82.16 82.30 82.44 82.58 82.72 60.77 59.98 59.21 58.46 57.73
1.0 78.26 78.28 78.29 78.31 78.32 82.72 83.06 83.39 83.73 84.07 61.88 61.17 60.49 59.81 59.15
8.0 78.90 79.56 80.23 80.91 81.60 83.11 84.66 86.27 87.95 89.69 68.37 67.46 66.57 65.71 64.86

Ours2
0.1 79.65 80.29 80.93 81.59 82.25 82.26 83.25 84.25 85.28 86.34 61.37 60.68 60.00 59.34 58.69
1.0 79.50 80.12 80.75 81.39 82.05 82.80 84.00 85.23 86.50 87.80 62.20 61.51 60.85 60.19 59.56
8.0 79.13 80.01 80.91 81.82 82.76 80.92 82.89 84.96 87.14 89.43 68.39 67.33 66.30 65.30 64.33

TABLE VI: Performance metrics comparison for the SpamEmail.

Text Quality Weighted Harmonic Mean Time Cost
Method ϵ PPL BLEU ROUGE TER 0.5:0.5 0.6:0.4 0.7:0.3 0.8:0.2 0.9:0.1 User-side Inference

HaS - 132.42 10.26 9.08 89.72 73.94 74.81 75.69 76.60 77.53 0.52 3.30
Kan’s1 - 57.45 8.01 8.61 89.05 65.12 61.82 58.84 56.13 53.66 1.39 3.08
Kan’s2 - 11.77 24.07 29.22 63.36 53.46 58.68 65.02 72.90 82.96 1.38 3.33

Ours
0.1 154.19 17.55 10.74 72.48 76.24 79.49 83.02 86.88 91.12 0.015+1e-05 3.28
1.0 126.03 18.52 10.41 49.89 76.67 79.93 83.47 87.35 91.60 0.014+1e-05 3.80
8.0 22.43 30.74 10.66 41.67 76.04 79.68 83.67 88.09 93.00 0.014+1e-05 3.25

(specifically, 31.57% on AGNews, 67.47% on PIIDocs, and
56.01% on SAMSum). Notably, on the PIIDocs dataset,
CusText+ shows high text quality yet remains significantly
vulnerable to PII attacks (e.g., 71.74% PII Ext even under
a strict privacy budget of ϵ = 0.1). CusText+ exhibits high
privacy risks due to two main factors: (1) whitespace-based
tokenization fails to separate special characters from PII
(e.g., “\n\nJane”), causing these sequences to be identified
as out-of-vocabulary (OOV) tokens; and (2) OOV tokens are
directly retained during sanitization. Consequently, CusText+
faces potential privacy exposure. Note that Rap-LI mitigates
high-risk PII exposure by reversing the score matrix for PII-
related tokens. Consequently, as ϵ increases, the probability
of selecting PII tokens decreases (Eq. 7). When ϵ is small,
the smoothing effect of the scoring function u∗ increases the
selection probability for low-probability PII tokens. However,
this does not significantly impact privacy, as demonstrated by
the robust privacy performance of Rap-LI at ϵ = 0.1.

Rap-LI demonstrates better overall performance. The
overall scores are shown in Table V-VI. Utility is given higher
weight than privacy, since poor utility significantly undermines
practical usability. Our methods achieve superior overall perfor-
mance across various ratios and privacy budgets (ϵ). Specifically,
by averaging over all Utility:Privacy ratios and ϵ ∈ {0.1, 1, 8},
our method consistently demonstrates superiority in average
gain: Ours1 achieves gains of 14.45 (AGNews), 9.28 (PIIDocs),
21.18 (SAMSum), and 16.34 (SpamEmail), while achieves
Ours2 gains of 16.50 (AGNews), 10.09 (PIIDocs), and 21.47
(SAMSum). On the NLG task (SAMSum), the overall score is
relatively lower for several reasons. First, text generation tasks
(e.g., summarization) are more sensitive to token-level perturba-
tions, as key information slots (e.g., who/what/when) must be
consistently preserved. Second, ROUGE scores—dependent on

TABLE VII: Text quality after sanitization (intermediate metrics).

AGNews PIIDocs SAMSum
Method ϵ PPL BLEU ROUGE-L TER PPL BLEU ROUGE-L TER PPL BLEU ROUGE-L TER

SanText+
0.1 >1000 20.52 50.40 51.02 658.11 8.71 32.54 81.72 >1000 13.68 42.11 74.77
1.0 >1000 20.53 50.40 50.97 668.09 8.71 32.59 81.64 >1000 13.69 42.10 74.64
8.0 >1000 20.61 50.58 50.53 698.98 8.76 32.75 81.22 >1000 13.81 42.15 73.44

CusText+
0.1 544.75 16.39 46.21 53.31 38.69 70.01 87.85 12.16 165.55 39.18 62.56 32.57
1.0 504.36 17.17 47.67 51.99 44.96 51.40 69.31 26.15 157.53 40.52 63.18 31.83
8.0 43.26 56.42 78.51 22.06 9.67 76.81 87.14 10.95 34.20 69.76 83.97 14.91

RanText
0.1 >1000 5.62 23.47 82.51 >1000 10.20 11.62 86.83 >1000 5.04 14.57 77.35
1.0 >1000 5.62 23.17 82.51 >1000 10.20 11.62 86.83 >1000 5.05 14.56 77.35
8.0 >1000 7.23 28.85 71.17 >1000 11.18 15.09 85.37 >1000 7.18 20.58 72.79

SnD dX

0.1 >1000 0.06 0.10 99.71 >1000 0.02 0.10 99.88 >1000 0.01 0.22 99.95
1.0 >1000 3.79 29.01 79.94 >1000 3.94 19.66 92.61 >1000 3.99 28.30 76.98
8.0 11.49 85.80 100.00 10.67 12.69 63.64 99.99 34.72 9.07 85.14 99.81 9.78

HaS - 49.36 14.66 26.51 86.04 48.72 11.82 19.58 87.67 41.96 8.81 18.99 90.27
Kan’s1 - 67.98 7.96 18.30 86.88 35.24 9.54 15.80 86.89 85.34 0.52 8.28 94.58
Kan’s2 - 44.08 6.06 26.50 84.07 19.36 15.70 28.65 64.21 64.35 0.82 10.35 93.01

Ours1
0.1 808.96 10.54 44.29 59.02 209.19 17.71 29.27 64.75 50.89 45.90 73.38 28.75
1.0 714.03 11.60 45.87 57.86 194.25 18.61 30.75 63.95 47.31 46.30 73.82 28.49
8.0 181.45 27.78 61.28 44.42 82.14 32.54 47.41 53.42 23.47 52.14 78.20 25.24

Ours2
0.1 507.25 14.67 46.79 53.80 120.61 23.23 37.98 57.02 119.65 53.38 72.03 21.81
1.0 464.99 15.69 48.15 52.77 112.55 24.16 39.40 56.17 117.69 53.80 72.35 21.59
8.0 154.64 29.54 61.75 41.06 56.08 38.60 51.96 45.67 73.74 59.22 75.93 18.84

n-gram overlap—drop significantly due to lexical mismatches,
even if semantics remain similar (e.g., changing “John met
Mary” to “He met her”). Nevertheless, the interpretation of
the overall score should be distinguished from conventional
metrics like accuracy. For example, although CusText+ yields a
seemingly low overall score of 64.60 (Utility:Privacy = 0.9:0.1),
its utility remains viable: the ROUGE-1 score (34.64) reaches
90.59% of the unsanitized baseline (38.24). Consequently, the
lower overall score primarily reflects compromised privacy
rather than unusable utility. In practice, method selection
should comprehensively weigh utility, privacy, and overall
scores against specific application requirements. We mitigate
these NLG challenges via ROUGE normalization, probabilistic
perturbation of non-PII tokens (Appendix F), and optional local
post-processing (Fig. 7(d)).

Time Overhead Analysis. To demonstrate the feasibility
of Rap-LI for large-scale cloud-based LLM inference, we
analyze the time complexity of its key components The
theoretical time complexity is summarized in Table VIII.
The user-side/local operations (risk detection, privacy budget
mapping, and sanitization) exhibit a combined complexity of
O(N2 · d+ S · V · d), where the similarity search constitutes
the primary computational bottleneck. Yet, GPU acceleration
ensures practical efficiency. Empirical time costs in Table VI
and IX show that the total user-side overhead of Rap-LI aver-
ages ∼0.1s, demonstrating superior or comparable efficiency
compared to existing baselines. This overhead is negligible
compared to LLM inference time (≈ 2-3s). Nevertheless, non-
LDP methods (HaS and Kan’s) incur higher overhead due to
reliance on local language models for anonymization (0.53s-
2.01s) and recovery (0.84s-1.45s). Additionally, Appendix F
presents performance and time cost comparisons of HaS and
Kan’s under settings with and without the local Seek/Recovery
module.

C. Diagnostic Experiments

Fig. 7 summarizes the optional utility-improvement strategies
(with default ϵ=1.0, AGNews): upgrading the black-box infer-
ence LLM, prompt tuning, and local post-processing/denoising
with Llama3-8B.

1) Comparison across different LLM inference models:
Enhanced LLMs mitigate utility loss after sanitization. As
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TABLE VIII: Time complexity analysis of Rap-LI components.

Module Component Complexity

1. Risk Detection Presidio (Regex + SpaCy) O(N)
Flair (Transformer NER) O(N2 · d)

2. Privacy Mapping Privacy Budget Mapping O(N)

3. Sanitization Similarity Computation O(S · V · d)
Candidate Token Sampling O(S ·K)

Total (User-side) Stages 1-3 O(N2 · d+ S · V · d)

N : Input sequence length; d: Embedding dimension; S: Number
of sensitive tokens; V : Vocabulary size; K: Number of candidate
tokens (K ≪ V ).

TABLE IX: Time (s) comparison across different methods. The
upright entries in the user-side phase denote the sanitization cost
(e.g., similarity computation and token sampling), while the italicized
entries indicate our additional time overhead, including risk detection
and privacy budget mapping. The italicized entries in the inference
phase represent the supplementary recovery overhead.

Method ϵ
AGNews PIIDocs SAMSum

User-side Inference User-side Inference User-side Inference

Unsanitized - - 2.24 - 1.87 - 2.28

SanText+
0.1 0.03 2.81 0.02 2.27 0.05 2.45
1.0 0.03 3.00 0.02 2.25 0.04 2.43
8.0 0.03 2.79 0.02 2.26 0.04 2.45

CusText+
0.1 0.04 2.89 0.02 2.12 0.07 2.44
1.0 0.04 2.79 0.02 2.15 0.06 2.41
8.0 0.03 2.39 0.02 2.05 0.06 2.37

RanText
0.1 0.08 2.77 0.09 2.10 0.23 2.41
1.0 0.08 2.79 0.09 2.05 0.23 2.37
8.0 0.04 2.65 0.04 2.14 0.11 2.41

SnD dX

0.1 0.24 2.24 0.31 1.82 0.65 2.30
1.0 0.24 2.75 0.31 2.01 0.86 2.40
8.0 0.24 2.23 0.31 1.87 1.07 2.29

HaS - 0.73 2.84 0.56 2.92 0.86 2.81+0.84
Kan1 - 1.49 2.49 1.66 2.81 1.82 2.29+1.45
Kan2 - 1.08 2.96 1.06 2.85 2.01 2.47+1.03

Ours1
0.1 0.08+0.02 2.71 0.09+0.03 2.12 0.16+0.03 2.59
1.0 0.08+0.02 2.73 0.09+0.04 2.12 0.17+0.03 2.55
8.0 0.08+0.02 2.51 0.09+0.04 2.08 0.16+0.03 2.43

Ours2
0.1 0.01+0.02 2.33 0.01+0.02 2.01 0.02+0.03 2.60
1.0 0.01+0.02 2.33 0.01+0.02 1.98 0.02+0.03 2.79
8.0 0.01+0.02 2.29 0.01+0.02 1.94 0.02+0.03 2.64

shown in Fig. 7(a), using enhanced LLMs such as GPT-4o,
GPT-4-Turbo, and DeepSeek-R1 (listed in decreasing order
of utility) improves utility compared to GPT-3.5-Turbo for
privacy-preserving inference, although this also increases
inference time. Also, the gap between the utility of sanitized
and original text decreases. Conversely, GPT-4o-mini leads
to greater utility degradation and widens the gap. Therefore,
employing superior models further reduces the need for
additional denoising or training.

2) Advantages over the “Training and Denoising” Setting:
a) Our method demonstrates a clear advantage over training-
based approaches such as SnD [3] in terms of time cost.
Training SnD on GPT2-XL (1.5B parameters) takes 30.3 hours
on a single A6000 GPU. As reported in [3], training time
increases substantially with model size; therefore, training
on models such as GPT-3.5 (175B) becomes prohibitively
expensive. In contrast, our method completes execution within
seconds, demonstrating a significant efficiency gain. b) Local
LLM denoising improves low-utility methods, with negligible
impact on high-utility methods. Following [33]’s idea, we
apply local LLM-based denoising using Llama3-8B (a stronger
model than used in [33]) across all methods. The denoising is
guided by the GPT inference process and its results; the specific
prompt is provided in Appendix C. Fig. 7(b) shows that local
LLM denoising improves utility for low-performing methods
but has little or no impact on high-performing methods such as
CusText+ and Rap-LI. In some cases, accuracy even decreases.

Furthermore, the denoising process introduces an additional
latency of approximately 4 seconds. This further validates that
our framework requires no denoising and no additional cost to
enhance the utility.

3) Impact of Prompt Engineering: Prompt engineering
enhances utility in LLM-based inference tasks. We compare
our tuned system prompt (Base) with two alternative prompt
styles: Prompt1, inspired by the investigator-style, guess-based,
and step-by-step reasoning approaches from [44], [54], and
Prompt2, adopting a concise style as in [39], [40]. The
differences among these prompts are detailed in Appendix
C. As shown in Fig. 7(c), prompts that incorporate role-
setting and chain-of-thought (CoT) reasoning achieve improved
performance, thereby demonstrating the effectiveness of prompt
engineering within our framework. Besides, the concise prompt
style results in lower inference latency.

4) Enhancing NLG Utility with Post-Processing: To mitigate
the utility loss issue in NLG tasks, we further test a lightweight
post-processing strategy: we use a local LLM (Llama3-8B) to
denoise and refine the black-box LLM output based on the
sanitized dialogue context. As shown in Fig. 7(d), this post-
processing can improve ROUGE on SAMSum for low-utility
settings, at the cost of additional local latency. This suggests
that combining Rap-LI with optional local post-processing is
a practical way to improve NLG usability when needed.

5) Resistance to Advanced Contextual Privacy Attacks: To
evaluate the proposed method’s ability to protect low-risk and
medium-risk tokens and mitigate latent contextual inference, we
conduct experiments on the SynthPAI dataset, which is designed
to leverage the emergent capabilities of LLMs for privacy
inference. We follow the official SynthPAI evaluation protocol:
GPT-4-Turbo is used for personal attribute inference. We
compare unsanitized text, anonymized text processed by Azure
PII-Remover [13], and sanitized outputs from our method and
CusText+ under varying privacy budgets. As shown in Fig. 8(a),
our methods reduce inference success rates, slightly outperform
CusText+ under some privacy budgets, and demonstrate greater
effectiveness than the anonymization-based approach in [13]
at mitigating contextual inference risks. Results in Fig. 8(b)
suggest that the proposed method offers stronger protection for
attributes with open-ended categories (e.g., Location, Occupa-
tion, Place of Birth) than for those with fixed, limited classes
(e.g., Sex). These findings on the SynthPAI dataset confirm
the effectiveness of our method in safeguarding contextual
personal information, thereby suggesting its applicability to a
broader privacy threats, particularly those inferred from low-
and medium-risk tokens.

6) Ablation Studies: To evaluate the effectiveness of each
module in Rap-LI, we conduct ablation studies, with detailed
results provided in Appendix F. Key findings include: a)
disabling risk identification and privacy mapping reduces utility
due to uniform budget (ϵ=1) allocation; b) removing sentence-
level budget constraint compromises privacy for non-PII tokens;
c) applying score reversal to medium-risk tokens decreases
utility with marginal privacy gains, validating our design to
apply it exclusively to high-risk tokens; d) disabling high-risk
score reversal increases PII exposure, confirming its necessity
for robust PII protection.
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Fig. 7: Primary diagnostic experiment results: (a) Enhanced LLMs mitigate utility loss, (b) Local LLM denoising benefits low-utility methods,
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TABLE X: User study results on five privacy-preserving tasks, each evaluated with short (-s) and long (-l) inputs. Q1–Q4 are rated on a
five-point Likert scale (1-5) and reported as mean±std. Time denotes privacy-adjustment time (seconds) and Count denotes the number of
user-adjusted tokens.

Metric T1AG-s T2AG-l T3SAM-s T4SAM-l T5Spam-s T6Spam-l T7Gene-s T8Gene-l T9Tran-s T10Tran-l Overall

Q1 4.70 ± 0.48 4.40 ± 0.84 4.50 ± 0.53 4.90 ± 0.32 4.90 ± 0.32 4.20 ± 0.79 4.80 ± 0.42 4.80 ± 0.42 4.00 ± 0.94 4.30 ± 0.82 4.55 ± 0.67
Q2 4.80 ± 0.42 4.70 ± 0.48 4.60 ± 0.52 4.80 ± 0.42 4.40 ± 0.52 4.60 ± 0.52 4.80 ± 0.42 4.80 ± 0.42 4.40 ± 0.52 4.70 ± 0.48 4.66 ± 0.48
Q3 4.40 ± 0.52 4.60 ± 0.52 4.70 ± 0.48 4.40 ± 0.52 4.50 ± 0.53 4.30 ± 0.48 4.60 ± 0.52 4.40 ± 0.52 4.50 ± 0.53 4.40 ± 0.52 4.48 ± 0.50
Q4 4.70 ± 0.48 4.60 ± 0.52 4.70 ± 0.67 4.80 ± 0.42 4.30 ± 0.67 4.60 ± 0.52 4.80 ± 0.42 4.90 ± 0.32 4.30 ± 0.48 4.70 ± 0.48 4.64 ± 0.52

Time (s) 11.47 ± 5.33 22.69 ± 6.24 15.01 ± 10.96 27.93 ± 10.73 11.13 ± 5.12 31.99 ± 13.25 13.09 ± 7.73 19.47 ± 10.31 8.90 ± 4.10 21.29 ± 10.21 18.30 ± 11.22
Count 2.20 ± 3.16 5.50 ± 6.96 3.50 ± 8.64 2.60 ± 2.50 4.10 ± 11.58 8.60 ± 8.06 6.30 ± 5.52 8.40 ± 10.28 1.10 ± 1.60 5.90 ± 6.42 4.82 ± 7.28
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Fig. 8: Personal attribute inference results on SynthPAI: (a) Com-
parison of attribute inference accuracy (higher bars=weaker privacy);
(b) Heatmap showing accuracy reduction relative to unsanitized text
(deeper blue=stronger privacy).

D. Practical Deployment and User Study

To validate the practical applicability and usability of Rap-
LI, we designed a Privacy-Preserving LLM Chat System
(similar to ChatGPT or Gemini) that integrates the proposed
Rap-LI with an interactive interface for user-adjustable token
risk levels. To enhance user experience, the system displays
the original prompt and the sanitized prompt side-by-side,
highlights replaced entities using colors corresponding to their
risk levels, and provides a one-click restoration module to
recover original private entities from the LLM output for
easier reading and task completion. The system also supports
a customizable sensitivity database (industry- or user-specific),
where custom rules are automatically mapped to risk levels to
reduce manual adjustments.

We recruited 10 participants (typical for controlled within-
subject usability studies [60]–[62]) from our campus who
regularly use popular LLM chatbots at least 2 hours daily.
Participants first read and agreed to the informed consent
form. After a tutorial video (≈7 minutes) and warm-up period
(≈10 minutes), each participant completed 10 test scenarios
across five tasks (General Chat, Translation, Topic Classifica-
tion (AGNews), Summarization (SAMSum), Spam Detection
(SpamEmail)) with both short and long texts. After each
scenario, participants answered a four-question questionnaire

integrated in the system using a five-point Likert scale. Q1-
Q4 specifically are: Q1: Did this response help you complete
your task? Q2: Did the sanitized text protect your privacy
concerns? Q3: Was the interactive privacy labeling process
tiring? Q4: Is the time spent on privacy adjustment worth it?
The total usability testing session lasts ≈30 minutes, and each
participant receives compensation of 30 RMB (approximately
$4.25, equating to $8.5/hr). All details regarding system design,
deployment specifications, and tutorial videos are available at
our repository.

User Study Results. Table X presents comprehensive
evaluation metrics. Results demonstrate high user satisfaction
across all dimensions. Notably, although adjustment time
increases for longer content, the ratings for Q3 (ease of use) and
Q4 (worthiness of privacy adjustment time) remain stable or
even improve, suggesting users find privacy adjustments more
worthwhile for content containing richer personal information.
The average processing time is acceptable for privacy-critical
applications, particularly considering that modern LLM features
(e.g., Deep Research, Extended Thinking) often require similar
or longer waiting times (even more than 10 minutes).

Practical Feasibility. Post-study interviews confirmed that
users found the interactive privacy adjustment process valuable
rather than fatiguing, with the responsive UI design being
more acceptable than blank waiting periods. The system
embodies “automation by default, manual intervention for
exceptions,” where Rap-LI automatically handles general
privacy information while empowering users to customize
domain-specific protections. This complementary mechanism
ensures greater reliability than either approach alone.

VII. DISCUSSION

A. Uniqueness and Benefits of Rap-LI’s Design Style

From a broader perspective, the proposed Rap-LI falls under
privacy-preserving prompt engineering as summarized in the
survey [19], as it involves risk-aware sanitization and prompt
engineering. Therefore, it avoids the catastrophic semantic loss
of rigid LDP methods (by being adaptive) and mitigates the
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unquantifiable privacy of broader privacy-preserving methods
(by maintaining LDP bounds). Consequently, Rap-LI’s design
offers the following benefits:

• Risk-Aware Privacy Protection Paradigm: Unlike fixed-
parameter LDP-based approaches, Rap-LI adapts protec-
tion strength to token sensitivity and user preferences,
thereby addressing contextual awareness and practical
usability.

• Provable Guarantees: Rap-LI maintains formal LDP
properties (Theorems V.1-V.2) while achieving context
awareness, thus providing greater stability and theoreti-
cal guarantees compared to broader privacy-preserving
methods (e.g., [21], [22]).

• Practical Usability: Rap-LI provides user-adjustable risk
levels in the designed Privacy-Preserving LLM Chat
System. This plug-and-play framework is well-suited for
practical use cases involving cloud LLM inference.

B. NER Model Dependency and Cross-Lingual Adaptation
Rap-LI’s PII identification relies on NER models, which

may exhibit varying performance across domains and lan-
guages. However, this represents one flexible implementation
approach rather than a fundamental limitation. Our SpamEmail
experiments demonstrate successful cross-lingual adaptation: by
utilizing models such as ckiplab/bert-base-chinese-ner assisted
by regular expressions, we detected an average of 7.18 PII
entities per Chinese sample and achieved superior utility-
privacy balance compared to non-LDP methods. Moreover,
the PII identification module can be flexibly adjusted (e.g.,
using language models, domain-specific models, or user-defined
rules) to ensure stable performance across diverse scenarios.

C. Limitations and Future Work
While Rap-LI achieves a strong privacy-utility trade-off

across various metrics, we acknowledge several limitations
that are shared across token-level DP-based text sanitization
approaches.

1) Semantic Coherence Loss: Token-level sanitization can
disrupt semantic coherence, particularly affecting text gen-
eration tasks like summarization. This remains a common
challenge in token-level DP approaches [29], [30], [33], and our
experimental analysis reveals the underlying factors. Besides,
in our method, low- or no-risk tokens are assigned to a risk-free
set Tls, which includes stop words, special tokens, and subwords
with suffixes like “##in”. Therefore, during sanitization, the
grammatical skeletons (e.g., “##in”) of high-risk tokens remain
unchanged, and surrounding tokens belonging to Tls are also
preserved to maintain context. By preserving these non-sensitive
tokens, the grammatical structure is maintained, and locally
perturbed tokens retain reasonable connections with verbs and
prepositions, thereby preventing complete prompt distortion or
dangerous LLM responses.

We have implemented targeted strategies for semantic-
sensitive tasks and achieved improvement. Future work could
further enhance NLG utility by integrating local recovery
modules (as explored in our practical deployment system)
to post-process LLM outputs and restore entity consistency, or
by combining with stronger local denoisers.

2) Limited to Text Modality: Rap-LI currently handles
text prompts only and does not support multi-modal inputs
(images, audio, video). This limitation reflects our design
choice to prioritize depth and rigor in text-based privacy
protection. Nevertheless, the risk-aware paradigm (detection
+ customization + adaptive DP) is conceptually generalizable
to other modalities: (1) Vision: Extend differential privacy
techniques to image sanitization [63], identifying sensitive
regions (e.g., faces, license plates) and applying risk-aware
perturbation. (2) Audio: Implement speaker anonymization with
privacy guarantees while preserving speech content. (3) Unified
multi-modal framework: Develop a comprehensive privacy
framework that handles heterogeneous data types [64]–[66]
(text, image, audio, video) with consistent risk assessment and
customizable protection levels.

VIII. CONCLUSION

In this paper, we identified significant vulnerabilities in
existing LDP-based text sanitization mechanisms for LLM
inference and presented a novel framework for risk-aware
privacy preservation. Rap-LI first identifies privacy risks within
user prompts and applies personalized labeling. Then, new
token-level LDP and sentence-level LDP formulations are
proposed, providing rigorous guarantees through a risk-aware
token sanitization mechanism. It also incorporates prompt
engineering to mitigate utility degradation. Experimental results
demonstrate Rap-LI’s effectiveness in balancing utility and
privacy, particularly in robustly preventing sensitive information
leakage. Rap-LI paves the way for exploring plug-and-play,
privacy-first protection methods for state-of-the-art LLMs.
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does it mean for a language model to preserve privacy?” in Proc. 2022
ACM Conf. Fairness Account. Transpar., 2022, pp. 2280–2292.

[24] K. Zhang, J. Wang, E. Hua, B. Qi, N. Ding, and B. Zhou, “Cogenesis:
A framework collaborating large and small language models for secure
context-aware instruction following,” in Proc. Annu. Meeting Assoc.
Comput. Linguist. (ACL), 2024, pp. 4295–4312.

[25] S. Samsi, D. Zhao, J. McDonald, B. Li, A. Michaleas, M. Jones,
W. Bergeron, J. Kepner, D. Tiwari, and V. Gadepally, “From words to
watts: Benchmarking the energy costs of large language model inference,”
in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC), 2023, pp.
1–9.

[26] J. Fernandez, C. Na, V. Tiwari, Y. Bisk, S. Luccioni, and E. Strubell,
“Energy considerations of large language model inference and efficiency
optimizations,” arXiv:2504.17674, 2025.

[27] C. Dwork, “Differential privacy,” in Autom. Lang. Program., 2006, pp.
1–12.

[28] M. Du, X. Yue, S. S. M. Chow, and H. Sun, “Sanitizing sentence
embeddings (and labels) for local differential privacy,” in Proc. ACM
Web Conf., 2023, pp. 2349–2359.

[29] X. Yue, M. Du, T. Wang, Y. Li, H. Sun, and S. S. M. Chow, “Differential
privacy for text analytics via natural text sanitization,” in Findings Assoc.
Comput. Linguist. Int. Jt. Conf. Nat. Lang. Process. (ACL-IJCNLP), 2021,
pp. 3853–3866.

[30] H. Chen, F. Mo, Y. Wang, C. Chen, J.-Y. Nie, C. Wang, and J. Cui,
“A customized text sanitization mechanism with differential privacy,” in
Findings Assoc. Comput. Linguist. (ACL), 2023, pp. 5747–5758.

[31] O. Feyisetan, B. Balle, T. Drake, and T. Diethe, “Privacy- and utility-
preserving textual analysis via calibrated multivariate perturbations,” in
Proc. 13th Int. Conf. Web Search Data Min., 2020, pp. 178–186.

[32] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, “What can we learn privately?” in Proc. IEEE Symp. Found.
Comput. Sci. (FOCS), 2008, pp. 531–540.

[33] M. Tong, K. Chen, J. Zhang, Y. Qi, W. Zhang, N. Yu, T. Zhang, and
Z. Zhang, “Inferdpt: Privacy-preserving inference for black-box large
language models,” IEEE Trans. Dependable Secure Comput., vol. 22,
no. 5, pp. 4625–4640, 2025.

[34] A. Petrov, E. La Malfa, P. Torr, and A. Bibi, “Language model tokenizers
introduce unfairness between languages,” in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), vol. 36, 2023, pp. 36 963–36 990.

[35] Z. Jorgensen, T. Yu, and G. Cormode, “Conservative or liberal?
personalized differential privacy,” in Proc. IEEE Int. Conf. Data Eng.
(ICDE), 2015, pp. 1023–1034.

[36] J. Acharya, K. Bonawitz, P. Kairouz, D. Ramage, and Z. Sun, “Context
aware local differential privacy,” in Proc. Int. Conf. Mach. Learn. (ICML),
2020, pp. 52–62.

[37] R. Thareja, P. Nakov, P. Vepakomma, and N. Lukas, “Dp-fusion:
Token-level differentially private inference for large language models,”
arXiv:2507.04531, 2025.

[38] H. Duan, A. Dziedzic, N. Papernot, and F. Boenisch, “Flocks of stochastic
parrots: Differentially private prompt learning for large language models,”
in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 36, 2023, pp.
76 852–76 871.

[39] X. Tang, R. Shin, H. A. Inan, A. Manoel, F. Mireshghallah, Z. Lin,
S. Gopi, J. Kulkarni, and R. Sim, “Privacy-preserving in-context learning
with differentially private few-shot generation,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2023, pp. 1–13.

[40] J. Hong, J. T. Wang, C. Zhang, Z. Li, B. Li, and Z. Wang, “Dp-opt:
Make large language model your privacy-preserving prompt engineer,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2023, pp. 1–14.

[41] A. N. Carey, K. Bhaila, K. Edemacu, and X. Wu, “Dp-tabicl: In-context
learning with differentially private tabular data,” in Proc. IEEE Int. Conf.
Big Data (Big Data), 2024, pp. 1552–1557.

[42] C. Song and A. Raghunathan, “Information leakage in embedding models,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2020, pp.
377–390.

[43] G. Dagan, G. Synnaeve, and B. Roziere, “Getting the most out of your
tokenizer for pre-training and domain adaptation,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2024, pp. 9784–9805.

[44] H. Yukhymenko, R. Staab, M. Vero, and M. Vechev, “A synthetic dataset
for personal attribute inference,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), vol. 37, 2024, pp. 120 735–120 779.

[45] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingv. Investig., vol. 30, no. 1, pp. 3–26, 2007.

[46] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnović, “Power law and
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APPENDIX

A. Algorithm Descriptions in the Proposed Rap-LI

Algorithm 1 describes the process of risk identification and
personalized labeling. Algorithm 2 details the token sanitization
process using risk-aware sampling, where tokens are sampled
based on their risk levels and similarity scores to ensure privacy
protection while maintaining utility.

Algorithm 1 Risk Identification and Personalized Labeling

1: Input: S = {ti}i∈[n]: Input tokens, E : NER tagger, Lr:
Total number of risk levels, ϵmax/ϵmin: Privacy budget
bounds, Urisk: (Optional) user-defined risk overrides.

2: Extract PII set: I ← E(S);
3: Initialize risk sets: Ths ← ∅, Tms ← ∅, Tls ← ∅;
4: for each token ti ∈ S do
5: if ti ∈ I then
6: Ths ← Ths ∪ {ti};
7: else if ti is stopword, special token, or punctuation then
8: Tls ← Tls ∪ {ti};
9: else

10: Tms ← Tms ∪ {ti};
11: end if
12: end for
13: for each token ti ∈ S do
14: if ti ∈ Ths ∪ Tms then
15: Assign default risk rank rti ;
16: if ti ∈ Urisk then
17: Override rti using user-defined setting in Urisk;
18: end if
19: Compute ϵ̂ti ← ϵmax − (rti − 1) · ϵmax−ϵmin

Lr
;

20: else
21: ϵ̂ti ←∞;
22: end if
23: end for
24: Compute sentence-level budget: ϵS ← 1

n

∑n
i=1 ϵ̂ti ;

25: Final budget per token: ϵti ← min(ϵ̂ti , ϵS);
26: Output: Labeled tokens {(ti, ϵti)}i∈[n].

B. Proof of Sentence-Level d · ϵS-LDP (Theorem V.2)

Proof. Let S = {t1, t2, . . . , tn} and S′ = {t′1, t′2, . . . , t′n} be
neighboring sentences with the set of differing positions D ⊆
[n], where |D| = d ≤ |Ths|+ |Tms|. For any sanitized output
S̃ = {τ1, τ2, . . . , τn} ∈ Θ, we have:

Pr[M(S) = S̃] =

n∏
i=1

Pr[Mu∗

ϵt (ti) = τi],

Pr[M(S′) = S̃] =

n∏
i=1

Pr[Mu∗

ϵt (t
′
i) = τi]. (1)

Therefore,

Pr[M(S) = S̃]

Pr[M(S′) = S̃]
=

∏n
i=1 Pr[Mu∗

ϵt (ti) = τi]∏n
i=1 Pr[Mu∗

ϵt (t
′
i) = τi]

. (2)

Algorithm 2 Token Sanitization with Risk-Aware Sampling

1: Input: S = {ti}i∈[n]: Input tokens, Y: Vocabulary,
{ϵi}i∈[n]: Privacy budgets, Kbase, A, p: Space parameters.

2: Initialize sanitized set S̃ ← ∅;
3: for each token ti ∈ S do
4: Compute Ki ← Kbase + ⌊A/ϵpi ⌉ ;
5: Calculate similarity scores u(ti, τj) for all τj ∈ Y via

Eq.(3) in Sec. V;
6: Select top-Ki tokens Ci with highest u(ti, τj);
7: if ti ∈ Ths (High-risk token) then
8: Reverse score order: u∗(ti, τj)← u(ti, τ

(i)
Ki−j+1);

9: else
10: u∗(ti, τj)← u(ti, τj);
11: end if
12: Sample τi via Eq.(7) in Sec. V;
13: S̃ ← S̃ ∪ {τi};
14: end for
15: Output: S̃ = {τi}i∈[n].

The probability ratio decomposes as:

Pr[M(S) = S̃]

Pr[M(S′) = S̃]
=

∏
i∈D

Pr[Mu∗

ϵt (ti) = τi]

Pr[Mu∗
ϵt (t

′
i) = τi]︸ ︷︷ ︸

Differing terms

×
∏
i/∈D

1︸ ︷︷ ︸
Non-differing terms

.

(3)
For each differing term, we apply the token-level LDP to
guarantee that (from Theorem V.1):

Pr[Mu∗

ϵt (ti) = τi]

Pr[Mu∗
ϵt (t

′
i) = τi]

≤ exp(
ϵti + ϵt′i

2
) ∀i ∈ D. (4)

Recall that ϵS = 1
n

∑n
i=1 ϵ̂ti , and ϵti = min(ϵ̂ti , ϵS), where

ϵ̂ti is the initial privacy budget for token ti, and ϵti is the
final privacy budget. Therefore, the privacy budget for any
token in the sentence does not exceed the overall sentence-
level budget ϵS , i.e., ϵS = maxi∈[n] ϵti , and thus ϵti , ϵt′i ≤ ϵS .
Consequently:∏
i∈D

exp(
ϵti + ϵt′i

2
) ≤ exp(

∑
i∈D

ϵS) = ed·ϵS (where d = |D|).

(5)
Hence, the mechanism in Rap-LI satisfies sentence-level d · ϵS-
LDP. In particular, when S and S′ differ by only one token,
M provides ϵS-LDP.
Remark: Since different tokens of the same sentence belong to
the same user, changes to a user’s data will affect the sampling
mechanisms of multiple tokens simultaneously. Therefore, it
is not valid to assume that the tokens are independent and
apply the parallel composition [1] of DP to prove that the
overall sentence privacy budget is ϵS . Such an assumption
would overestimate the actual privacy protection. (yielding
total budget ϵS rather than the correct d · ϵS).

C. Prompt Design for LLM Inference

The specific prompts used for LLM inference across different
downstream tasks are detailed below. Additionally, to evaluate
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the impact of prompt engineering, we compare different
prompt designs on the topic classification task. The details
of the compared prompts are listed in Table A.I. Furthermore,
to evaluate the effect of “denoising”, we adopt a prompt
constructed based on the denoising approach proposed in [2],
as shown in Table A.II, which is used to guide locally deployed
LLMs for evaluation.

Task: Topic classification, Dataset: AGNews
You are a topic classification expert. Your task is to classify the topic of
the disturbed news text provided by the user. Analyze the content carefully,
accounting for any potential noise or distortion, and provide a concise,
step-by-step explanation of your reasoning process. Ensure the explanation
is clear and to the point, focusing only on the most relevant details. Based
on your analysis, assign the text to one of the following potential topic
categories: [‘World’, ‘Sports’, ‘Business’, ‘Science/Technology’]. Even if
the text appears ambiguous or lacks sufficient context, you must classify
it into the most likely category based on the available information. Avoid
including any statements suggesting that the classification is inconclusive.
Do not use any JSON-like syntax or references to ‘label’: * in your
reasoning. At the very end of your output, strictly include a single
JSON dictionary in the format: ‘label’: 0 to ‘label’: 3, where the label
corresponds to the selected topic category. This JSON dictionary must
appear exactly once in your response, and no other similar structures
should be included.

Task: PII document classification, Dataset: PIIDocs
You are a document classification expert. Your task is to classify the
category of the disturbed document text provided by the user. Analyze
the content carefully, accounting for any potential noise or distortion, and
provide a concise, step-by-step explanation of your reasoning process.
Ensure the explanation is clear and to the point, focusing only on the
most relevant details. Based on your analysis, assign the text to one
of the following potential document categories: [‘healthcare’, ‘legal-
documents’, ‘travel-hospitality’]. Here is a brief summary of possible
document types under each category: healthcare: typically medical
reports, test results, vaccination records, discharge summaries, insurance
claims, billing statements, administrative forms, appointment requests, etc.
legal-documents: typically contracts, agreements, subpoenas, settlements,
judgments, etc. travel-hospitality: typically itineraries, e-tickets, hotel
reservations, baggage policies, feedback forms, etc. Even if the text
appears unclear or lacks sufficient context, you must classify it into the
most likely category based on the available information. Avoid including
any statements suggesting that the classification is inconclusive. Do not
use any JSON-like syntax or references to ‘label’: * in your reasoning.
At the very end of your output, strictly include a single JSON dictionary
in the format: ‘label’: 0 to ‘label’: 2, where the label corresponds to the
selected document category. This JSON dictionary must appear exactly
once in your response, and no other similar structures should be included.

Task: Multi-turn dialogue summary, Dataset: SAMSum
You are an expert at writing concise, factual summaries of informal chat
dialogues. Your task is to analyze and summarize the perturbed multi-turn
conversation provided by the user. The conversation may contain noise
or distortions that make it difficult to understand. Consider the context
carefully, try to infer the original meaning despite any corrupted text.
Write a very concise summary (one sentence at most) that captures the
gist of the conversation. Focus on key information such as who is talking
to whom, what are they discussing, and what decisions or conclusions
are reached. Provide a step-by-step explanation of how you derived your
summary despite the noise in the text. Your summary should be succinct
and coherent, even if parts of the original conversation are unclear. At
the very end of your output, strictly include a single JSON dictionary in
the format: ‘summary’: ‘Your concise summary here’, which contains
your final summary. This JSON dictionary must appear exactly once in
your response, and no other similar structures should be included.

Task: Spam email classification, Dataset: SpamEmail

你是一位专业的中文邮件分类专家。你的任务是对提供的中文邮

件内容进行分类，判断其是否为垃圾邮件。请仔细分析邮件内容，

考虑到文本中可能存在的噪音或扰动，并提供简洁、逐步的推理
过程。请考虑以下因素：可疑的语言模式、促销内容、紧急行动号

召、索取个人信息的请求以及整体合法性。基于你的分析，将邮件

分类为以下类别之一：’垃圾邮件’（不需要的、促销的或潜在恶意
的邮件）或’正常邮件’（合法的、非垃圾邮件）。即使文本看起来
模糊或缺乏足够的上下文，你也必须根据可用信息将其分类到最可

能的类别中。避免包含任何表明分类不确定的陈述。在你的推理中
不要使用任何JSON格式或对{’label’: *}的引用。在输出的最后，严
格包含一个JSON字典，格式为：{’label’: 1}（垃圾邮件）或{’label’:
0}（正常邮件），其中标签对应你的分类结果。这个JSON字典必
须在你的响应中只出现一次，不应包含其他类似的结构。

D. Additional Task and Dataset Details

We prioritize using the test set of each dataset. If the test
set contains few or no samples, we use the validation set or
training set.

• AGNews [3]: AGNews is a widely used dataset for text
classification, primarily focused on news categorization.
It includes four main categories: World, Sports, Business,
and Sci/Tech. AGNews is commonly used to benchmark
the performance of various natural language processing
models.
Example: text: Fears for T N pension after talks Unions
representing workers at Turner Newall say they are

‘disappointed’ after talks with stricken parent firm Federal
Mogul. label: 2-Business.

• PIIDocs [4]: This dataset is a synthetically generated
collection of documents enriched with Personally Iden-
tifiable Information (PII) spanning multiple domains.
Due to its novelty, we collect training data from
three categories—healthcare, legal documents, and travel-
hospitality—to construct PIIDocs, as these domains in-
volve highly sensitive PII. The test split is omitted due to
insufficient qualifying records.
Example: text: **Guest Information:** - Name: Lauren
Taylor-Turner - Email: sanchezjoshua@example.org -
Date of Birth: 1999-04-24. label: 2-travel-hospitality.

• SpamEmail: This Chinese spam email detection dataset
is collected from the Jizhi Dataset Platform, contain-
ing 3,980 carefully curated samples for binary clas-
sification (spam vs. normal). We randomly selected
1,000 samples with equal distribution from each class
for testing. To demonstrate Rap-LI’s cross-lingual gen-
eralizability, we employ a BERT-based NER model
(ckiplab/bert-base-chinese-ner) combined with reg-
ular expressions for PII identification, which successfully
detects an average of 7.18 PII entities per sample. This
dataset validates that Rap-LI’s PII identification module
can be flexibly adapted to different languages through ap-
propriate model selection, maintaining stable performance
across diverse linguistic contexts.
Example: text: 各位同事请注意：本周五下
午14:00在A栋3层会议室召开季度项目评审会，请携
带最新方案文档。会议议程已附于附件，重要提醒：
提前10分钟签到. - 项目管理部会议时间：2023-10-06
14:00-17:00. label: normal.
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TABLE A.I: Comparison of Different Prompting Strategies for Topic Classification

Type Prompt

Ours (Base) You are a topic classification expert. Your task is to classify the topic of the disturbed news text provided by the user. Analyze the content
carefully, accounting for any potential noise or distortion, and provide a concise, step-by-step explanation of your reasoning process. Ensure
the explanation is clear and to the point, focusing only on the most relevant details. Based on your analysis, assign the text to one of the
following potential topic categories: [‘World’, ‘Sports’, ‘Business’, ‘Science/Technology’]. Even if the text appears ambiguous or lacks
sufficient context, you must classify it into the most likely category based on the available information. Avoid including any statements
suggesting that the classification is inconclusive. Do not use any JSON-like syntax or references to {‘label’: *} in your reasoning. At the very
end of your output, strictly include a single JSON dictionary in the format: {‘label’: 0} to {‘label’: 3}, where the label corresponds to the
selected topic category. This JSON dictionary must appear exactly once in your response, and no other similar structures should be included.

Prompt1 You are an expert investigator with years of experience in news text analysis. You work with an analytical mindset and try to answer
questions as precisely as possible. Let us play a guessing game. Your task is to guess the disturbed news text provided by the user to one of
the following potential topic categories: [‘World’, ‘Sports’, ‘Business’, ‘Science/Technology’]. First reason step-by-step for each value going
over all information in the text as well as language used. Then give your top guess based on your reasoning. Follow exactly the format
specified below: at the very end of your output, strictly include a single JSON dictionary in the format: {‘label’: 0} to {‘label’: 3}, where
the label corresponds to the selected topic category. This JSON dictionary must appear exactly once in your response, and no other similar
structures should be included.

Prompt2 Classify the news articles into the categories of [‘World’, ‘Sports’, ‘Business’, ‘Science/Technology’]. At the very end of your output, strictly
include a single JSON dictionary in the format: {‘label’: 0} to {‘label’: 3}, where the label corresponds to the selected topic category. This
JSON dictionary must appear exactly once in your response, and no other similar structures should be included.

TABLE A.II: Prompt Design for Local LLM-Based Denoising

Type Prompt

topic classification You are a topic classification expert. Your task is to classify the topic of the ‘Original sentence’ provided by the user. The ‘Original sentence’
has been transformed into a ‘Disturbed sentence’, which GPT analyzed to produce reasoning and classification in the ‘GPT’s analysis and
classification’. Reference GPT’s reasoning approach while independently evaluating the ‘Original sentence’. Classify the text into one of the
following categories: [‘World’, ‘Sports’, ‘Business’, ‘Science/Technology’]. Even if the text is unclear, classify it into the most likely category.
IMPORTANT: At the very end of your response, provide exactly one JSON dictionary in the format: {‘label’: *}, where * corresponds to
the selected category (0 for World, 1 for Sports, 2 for Business, 3 for Science/Technology). This dictionary must appear only once, and no
other JSON-like structures should be included in your response. If you fail to provide the JSON dictionary {‘label’: *} at the end, your
answer will be considered incomplete or invalid.

multi-turn dialogue summary You are a dialogue summarization expert. Your task is to summarize the ‘Original sentence’ (which is a dialogue) provided by the user.
The ’Original sentence’ has been transformed into a ‘Disturbed sentence’, which GPT analyzed to produce a summary in ‘GPT’s analysis
and classification’. Reference GPT’s summary while independently evaluating the ‘Original sentence’. Generate a concise summary of the
dialogue. IMPORTANT: At the very end of your response, provide exactly one JSON dictionary in the format: {‘summary’: ‘Your summary
here’}. This dictionary must appear only once, and no other JSON-like structures should be included in your response. If you fail to provide
the JSON dictionary {‘summary’: ’...’} at the end, your answer will be considered incomplete or invalid.

• SAMSum [5]: SAMSum contains everyday conversational
dialogues (e.g., casual chat, friend gossip, meeting schedul-
ing) for dialogue summarization tasks. The dialogues
range from informal to semi-formal or formal, and the
summaries provide concise third-person descriptions of
the discussed content. Since the test set includes only 819
samples, we additionally use the validation set.
Example: dialogue: Jack: I’m 10 min late.. \r\n Jack:
sorry \r\n Laura: no worries, I’ll wait inside \r\n Jack:
ok; summary: Laura and Jack are about to meet. Jack is
running 10 minutes late.

• SynthPAI [6]: SynthPAI is a diverse synthetic dataset of
user comments manually labeled for personal attributes.
It is designed to investigate LLMs’ personal attribute
inference capabilities on online texts.
Example: text: Staircases outside brick houses—they’re
like city-wide trademarks where skies meet labyrinths
beneath them! Totally transforms walking your neigh-
borhood into an open-air museum tour... minus the
entrance fee! (additional fields are available at https:
//huggingf ace.co/datasets/RobinSta/SynthPAI).

E. Additional Implementation Details

All experiments are conducted on a machine with an NVIDIA
RTX 4090 GPU (24GB VRAM). Following [7], we combine
Flair and Presidio taggers for English datasets (AGNews,
PIIDocs, SAMSum, SynthPAI). For the Chinese SpamEmail
dataset, we employ ckiplab/bert-base-chinese-ner com-
bined with regular expressions for robust PII detection across
entity types. The remaining hyperparameters are set as Kbase =

20, A = 100, and p=1.2 for controlling the privacy-adaptive
token space. To preserve utility while ensuring privacy, we
implement domain-specific replacement strategies: numbers
and ordinals are replaced with randomly sampled values
of similar magnitude; currency symbols are replaced with
randomly sampled alternative currency symbols; grammatical
skeletons (e.g., subword suffixes like “##in”) are preserved
to maintain syntactic structure. Cosine similarity is used by
default to measure token-level similarity scores for constructing
risk-aware similarity matrices. For overall text similarity
evaluation (privacy metric), we compute cosine similarity
between Universal Sentence Encoder (USE) [8] embeddings
of original and sanitized texts. Furthermore, ablation studies
on experimental settings are provided in Appendix F.

F. Ablation Studies and Parameter Analysis

Table A.III examines the effectiveness of each component
(using Ours1, GPT-3.5-Turbo, AGNews, ϵ=1): (1) Risk Iden-
tification and Privacy Mapping, which combines NER-based
PII detection with differential privacy budget assignment; (2)
High-risk Reversal, implementing candidate token selection
for sensitive information; (3) Med-risk Reversal, extending
protection to moderately sensitive content; and (4) Sentence-
level Budget, controlling overall privacy allocation across
tokens. The ablation studies designed to disentangle the effects
of these core components are detailed as follows:

• Ablation1 disables Risk Identification and Privacy Map-
ping. Without this module, all privacy budgets (ϵ) default
to 1.0, which leads to utility loss (due to over-protection of
benign words), while privacy increases. In Ablation 1, the

https://huggingface.co/datasets/RobinSta/SynthPAI
https://huggingface.co/datasets/RobinSta/SynthPAI
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TABLE A.III: Ablation study of key components. Highlighted values indicate noteworthy deficiencies.

Model Component Configuration Performance Metrics

Risk Ident &
Mapping

High-risk
Reversal

Med-risk
Reversal

Sent-level
Budget Acc ↑ Sim ↓ PII Ext ↓ PII Mat ↓ MaskInf ↓ EmbInv ↓

Ours ✓ ✓ ✗ ✓ 78.34 53.22 15.91 15.45 4.23 20.29
Ablation1 ✗ ✓ ✗ ✓ 70.55 36.48 10.43 3.25 1.80 14.45
Ablation2 ✓ ✓ ✗ ✗ 81.82 61.13 16.26 16.05 5.81 26.68
Ablation3 ✓ ✓ ✓ ✓ 75.78 46.06 15.61 14.93 2.96 15.57
Ablation4 ✓ ✗ ✗ ✓ 79.61 54.53 18.97 20.68 4.43 20.89

TABLE A.IV: Effect of candidate token pool size Kbase.

Kbase Acc ↑ Sim ↓ PII Ext ↓ PII Mat ↓ MaskInf ↓ EmbInv ↓

20 78.34 53.22 15.91 15.45 4.23 20.29
10 81.46 59.26 21.36 30.67 5.25 22.78
50 72.95 45.29 12.13 6.21 2.95 17.51

100 67.59 38.98 10.24 3.41 2.19 15.95

TABLE A.V: Performance comparison with HighMASK.

Method ϵ Acc ↑ Sim ↓ PII Ext ↓ PII Mat ↓ MaskInf ↓ EmbInv ↓

Ours
0.1 77.80 51.76 16.24 16.95 3.93 19.29
1 78.34 53.22 15.91 15.45 4.23 20.29
8 82.30 64.16 12.43 6.04 6.88 31.60

HighMASK
0.1 62.76 40.62 0.21 0.03 2.53 14.54
1 63.12 41.78 0.22 0.03 2.82 15.75
8 65.68 50.74 0.28 0.03 5.75 28.75

advantage of Rap-LI’s granular privacy budget allocation
is eliminated.

• Ablation2 removes the Sentence-level Budget constraint.
This setting relaxes privacy constraints, thereby compro-
mising the privacy of non-PII tokens.

• Ablation3 enables Med-risk Reversal alongside High-risk
Reversal. The results demonstrate that adding similarity
score matrix reversal operations for medium-risk tokens
makes it easier to select unrelated content, consequently
leading to decreased utility.

• Ablation4 disables High-risk Reversal while maintaining
other protections. After removing the similarity score ma-
trix reversal operation, high-risk tokens (typically PII) are
more easily replaced with content closely resembling these
tokens, thus resulting in decreased privacy, particularly
reduced resistance to PII attacks.

Table A.IV presents a sensitivity analysis examining the
impact of candidate token pool size Kbase, which determines
the sampling space for token replacement. Smaller values
(e.g., Kbase=10) provide stronger privacy protection but may
compromise utility, while larger values (e.g., Kbase=100) offer
better utility preservation at the cost of reduced privacy
guarantees.

We also compare our approach with PII entity masking (see
Table A.V). It compares performance when DP-noising on high-
risk categories is replaced by entity masking (HighMASK),
with noise applied only to medium-risk tokens (AGNews
dataset). While masking detected PII reduces similarity and PII
attack success rates, it also leads to greater semantic loss and
lower utility. In contrast, our methods preserve better utility
with minimal privacy degradation. Therefore, our contributions
extend beyond NER tagging.

For the summarization-oriented NLG task (SAMSum), Fig.
A.1 illustrates the effects of different probabilities pr on utility,
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Fig. A.1. Analysis of medium-risk token perturbation probability pr.
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Fig. A.2. Performance analysis of local Seek/Recovery modules in
non-LDP privacy-preserving methods.

privacy, and the overall performance score. We observe that as
pr increases, utility decreases while privacy increases. Since the
privacy trend is less pronounced than the utility drop, the final
overall performance score decreases as pr increases. To balance
utility and privacy while maintaining usable performance, Rap-
LI perturbs medium-risk tokens with a default probability of
0.3 for generation tasks.

Additionally, we report a performance comparison of non-
LDP methods with and without the local Seek/Recovery module
in Fig. A.2 (SAMSum). Observations reveal that the “Seek”
module further degrades HaS because heavy perturbations in the
“Hide” phase and subsequent LLM inference excessively distort
the information, leaving post-processing unable to recover high-
quality content. In contrast, Kan’s methods show improved
performance with the recovery module, benefiting from the
understanding and reconstruction capabilities of the local LLMs
(Llama2-7B and Llama3-8B), albeit incurring an additional
recovery latency of over 1 second.
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