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ABSTRACT In this article, we propose a web back-end database leakage incident reconstruction frame-
work (WeB-DLIR) over unlabeled logs, designed to improve the intelligence and automation of reconstruct-
ing web back-end database leakage incidents triggered by web-based attacks in unannotated logging
environments. Using WeB-DLIR, analysts can reduce the manual workload of tracing and responding to data
leakage incidents. Specifically, we first design web front-end and back-end anomaly identification methods
based on neural network models with a pruning strategy and fine-grained grouping clustering analysis,
respectively, for completely identifying web-related abnormal events in unlabeled logs. To remove redundant
abnormal events and reduce subsequent inspection work for false alarm cases, we then propose an anomaly
detection result decision fusion method (DFADR). Moreover, to visualize the attack chain reflected by abnor-
mal events, based on the decision fusion results, we propose an attack graph modeling method that can reflect
the basic process of data leakage from multiple perspectives. Finally, based on the modeling results, the topol-
ogy of the data leakage scenario reconstruction can be completed by further auditing the relevant logs. Exper-
imental results using real-world datasets show that the proposed WeB-DLIR is efficient and feasible for
practical applications.

INDEX TERMS Web-related data leakage, anomaly detection, attack modeling, incident reconstruction,
unlabeled logs

I. INTRODUCTION

With the rapid development of Internet technology, the web
and its related technologies are becoming more and more
popular and widely used. Web applications with openness
and ease of use are gradually replacing many traditional
Internet services, more services can be handled on web
applications, and a large number of web applications are
widely arranged in organizations such as government agen-
cies and enterprises. Therefore web applications involve
more sensitive information, which is mainly kept in the
web back-end database servers, storing core assets such as
customer and confidential business data [1]. These core
data attract a large number of cyber-attacks based on web
platforms that are designed to access important information
in the servers, especially security vulnerabilities that are
frequently detected and exploited in modern web applica-
tions [2]. The resulting information leakage is causing
increasing losses to people’s working life, and web back-

end database leakage incidents have attracted more atten-
tion and research.
Existing research about web back-end database leakage

mainly concentrates on data leakage prevention (DLP) [3],
[4], data leakage detection (DLD) [1], [5], and data leakage
forensics (DLF) [6], [7]. Among these, DLP aims to predict
and prevent data breaches before an incident occurs. DLD,
on the other hand, detects potential or ongoing data leakages
by analyzing multiple sources of log data [5], spotting anom-
alies in database transactions [1], etc. Unlike the previous
two, DLF occurs more often after a data leakage attack and
mainly involves collecting, pre-processing, and analyzing
log data [6], tracking and displaying sensitive data propaga-
tion paths through data flow graph visualization [7], and
finally identifying the data leakage incident.
The aforementioned works focus on capturing network

records, detecting and preventing data breaches. To the best
of our knowledge, there is currently no effective method that
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focuses on web back-end database leakage scenario recon-
struction to present an intuitive view of security incidents. In
fact, it is essential to investigate methods for reconstructing
attack scenarios, which have been extensively studied in
other application scenarios of cybersecurity [8], [9]. Attack
scenario modeling can summarize the causal links of an
attack, enabling analysts to understand how the attacker vio-
lates security regulations and to determine the impact of the
attack for the prevention of subsequent attacks [8].
In addition, the above web-based data leakage research

uses a variety of richly annotated security event datasets as a
way to detect and prevent data breaches. Unfortunately, the
current cyberspace environment is constantly changing and
new attacks are occurring, making it difficult for security
agencies to obtain enough samples of attacks in a short
period [10]. Professional analysts usually put in a lot of work
to collect labeled log data, while getting unlabeled logs is
much easier [11]. However, data leakage scenario reconstruc-
tion with only unlabeled logs faces some challenges. One of
the main challenges is to reduce anomalous false alarms
unrelated to the data leakage scenario while ensuring the
accuracy of identifying unlabeled data anomalies [12], which
is critical to reducing the subsequent auditing workload of
analysts. Moreover, how to correlate abnormal events and
infer what activities the attacker performed [13], which will
affect the quality of data leakage scenario reconstruction.
Hence, in this paper, we seek to address the following chal-
lenge: How do we utilize unlabeled multi-source logs to
accurately reconstruct and visually present web back-end
database leakage incidents?
To address the above-mentioned issues, we propose aWeb

Back-end Database Leakage Incident Reconstruction frame-
work (WeB-DLIR) over unlabeled logs. The main contribu-
tions of this paper are summarized below:
1) Our proposed WeB-DLIR is designed to provide pow-

erful support for web back-end database leakage foren-
sics in a real network environment to prevent
subsequent web-based attacks. WeB-DLIR can identify
abnormal events in unlabeled multi-source logs and
correlate them with fusion, and then reconstruct data
leakage incidents through attack modeling.

2) We propose an abnormal event detection method based
on unlabeled logs at the web front and back ends. We
design a deep neural network with pruning strategy for
anomaly detection of payloads at the web front-end and
a fine-grained grouping clustering analysis strategy for
anomaly detection of database access characteristics at
the web back-end.

3) We perform decision fusion on the anomaly detection
results (DFADR) to retain abnormal behaviors with
correlated events. Then we propose an automated attack
graph-based modeling approach that is able to model
the causal linkage between different correlated events,
thus formalizing the attack scenario of data leakage into
a problem of finding the maximum connected subgraph
in visual analysis.

4) We evaluate WeB-DLIR using web-related unlabeled
logs during practical enterprise data leakage periods,
and the evaluation results show that our proposal helps
to improve the accuracy and intelligence of anomaly
detection, correlation analysis, attack modeling, and
reconstruction of data leakage incidents.

The remainder of this paper is organized as follows. In
Section II, we discuss the preliminaries and describe the
motivation of the methods used by WeB-DLIR. In
Section III, we formalize the attack model and problem
description. In Section IV, we give an overview of WeB-
DLIR and elaborate on the technical details of each module
in WeB-DLIR. Section V evaluates the performance of
WeB-DLIR. Finally, we conclude our work in Section VI.

II. BACKGROUND AND RELATEDWORK

In this section, we review anomaly detection, correlation
fusion, and attack modeling techniques involved in the data
leakage reconstruction process. Furthermore, we clarify the
motivation of the methods used or proposed in WeB-DLIR.

A. WEB-BASED ANOMALY DETECTION

Existing web-based anomaly detection methods can be cate-
gorized under web front-end-oriented and web back-end-ori-
ented anomaly detection, where the web front-end is mainly
analyzed in terms of web traffic and web payload, and the
web back-end is mainly analyzed in terms of web database
access. Many researchers perform anomaly detection based
on web traffic [14], but anomaly identification in the traffic
characteristics dimension generally only identifies the abnor-
mal hosts associated with the preliminary stage of network
attack implementation.
Therefore, researchers have focused on information that

reflects malicious behaviors such as obtaining access and
control privileges, that is, web front-end payloads. Identify-
ing abnormal payloads can be considered as a special case of
text classification. There are already many methods that can
be applied to abnormal payload detection, for example, Chen
et al. [15] investigated the method of extracting payload fea-
tures and verified the accuracy and stability of the malicious
payload classification model using the XGBoost algorithm.
However, most of them take a lot of time to do manual fea-
ture engineering and even require expert guidance to identify
important payload features. In recent years, CNN has been
widely and effectively used in tasks such as sentence classifi-
cation [16], so Tian et al. [17] explored the effectiveness of
CNN in malicious web shell detection. However, since CNN
is weak in learning sequence information [18], the method of
pre-adding a BLSTM has emerged. BLSTM is good at
extracting sequence features and helps CNN to obtain the
most important contextual information in a sentence, which
is not possible with a unidirectional LSTM. The BLSTM-
CNN strategy is widely used in the field of NLP thus proving
to be an effective idea, such as Xiao et al. [19] and Zhao
et al. [20]. Inspired by this, our WeB-DLIR uses a BLSTM-
CNN model for web front-end payload anomaly detection in
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the hope of achieving better identification results while
reducing the workload of analysts.
On the other hand, anomaly identification of web back-end

database access characteristics is also crucial. After gaining
control of a critical host or server, an attacker reads sensitive
data from the back-end database as a legitimate identity,
which is an anomaly closely related to data leakage. In this
process, it is less likely to contain malicious payload charac-
teristics and thus more stealthy. Therefore, based on actual
database access data, the use of unsupervised learning meth-
ods for analyzing the user behavior in accessing databases is
the most common and effective way for database anomaly
detection [1]. For example, Kul et al. [21] performed vector-
based clustering analysis to identify abnormal query features
for analysts to further check database security issues. In partic-
ular, the Kmeans method in unsupervised learning is widely
adopted in anomaly detection, for example, Kamra et al. [22]
used the Kmeans clustering method and outlier detection tech-
niques to enhance the identification ability of abnormal access
to the database. However, since the determination of the num-
ber of clusters and the initial clustering centroids in Kmeans
has a large impact on its performance, we perform fine-
grained grouping clustering of database access features so that
the value of K can be easily determined in a small range.
To identify the key abnormal events of data leakage, we

perform anomaly detection on both the front and back ends
of the web.

B. ABNORMAL EVENT CORRELATION FUSION

By fusing anomaly detection results or network security inci-
dent correlation, it can achieve the goals of accurately identi-
fying anomalies, reducing redundant alarms and false
alarms, and improving the accuracy of security incident iden-
tification [23]. Zhang et al. [24] proposed a correlation analy-
sis method for network security incidents based on attribute
similarity, which can effectively improve the efficiency of
security incident analysis for network administrators. Liu
et al. [25] proposed a rough set-based network security inci-
dent correlation scheme to build a network security incident
database and knowledge base, which solved the problem of
simplification and correlation of large-scale security inci-
dents. Ambre et al. [26] correlated network security incidents
based on the idea of the probability calculation method,
which reduced the false alarm rate for internal environment
anomaly detection.
However, simply staying in the study of more accurate

anomaly detection methods or more effective security
incident extraction research may not meet the needs of recon-
structing web-based data leakage scenarios, and our WeB-
DLIR considers more on the supporting role of correlation
analysis for subsequent analysis stages such as attack
modeling.

C. SECURITY EVENT ATTACK MODELING

Attack modeling techniques aim to help analysts understand
the sequence of network attack incidents or potential threat

behaviors to enable the blocking of potential attacks or
timely fixing of vulnerabilities [27]. The more popular attack
modeling techniques are graph-based attack graph and attack
tree approaches [28], on which a large number of studies
have been actively explored. For example, Hossain et al. [8]
proposed a method to reconstruct attack scenarios in real-
time in an enterprise environment based on the attack graph
approach, which can obtain a concise view of the attack sce-
nario. Niu et al. [29] proposed a complex attack model
TCAN based on dynamic attack graphs to visualize each
attack step. Maciel et al. [30] model DDoS attacks based on
the attack tree approach to evaluate the impact of DDoS
attacks against computer systems on the system for threat
risk analysis.
Attack graph and attack tree methods focus on describing

the possible paths of the attack process and can be applied to
analyze and predict attacker behavior, identify network vul-
nerabilities, etc. In WeB-DLIR, we consider attack modeling
techniques that can simultaneously reflect the time series,
abnormal hosts, abnormal event causality, and the attack step
process to achieve an intuitive and perceptive presentation of
security incidents such as web-based data leakage.

III. PROBLEM STATEMENT

A. ATTACK MODEL

As shown in Figure 1, we assume that the data leakage sce-
nario occurs inside an organization such as an enterprise.
The starting point of the attack is often some legitimate hosts
within the organization, such as Inside User A or Inside User
B, who may be communicating with hosts on an external net-
work or under the control of an external attacker. The attack
steps are divided into three main steps: first conduct vulnera-
bility scans on the organization’s internal assets, such as file
servers and database servers, to obtain vulnerability informa-
tion; then the vulnerable servers are attacked with malicious
payloads to gain control; finally, the server is used to read
important internal database server assets and cause database
leakage propagation. This paper focuses on the main steps
that cause database leakage, which is the part of the blue area
on the right side of Figure 1. Our WeB-DLIR consists of
four main entities, namely Inside User (IU), Web Server
(WS), Database Server (DS), and Outside Internet (OI).

FIGURE 1. Attack model of WeB-DLIR. In the diagram, the dashed

lines represent steps that may, but not always, occur.
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� IU is a legitimate user inside the organization, but after
suffering from the control of hackers, IU performs mali-
cious load attacks on the web server based on the vulner-
ability information obtained during scan probing, such
as XSS attacks, SQL injection attacks, etc. (step�1 ).

� WS is a web server inside the organization, but several
vulnerabilities can be maliciously exploited. IU attacks
the WS, accesses resources such as password cracking
tools from OI (step �2�3 ), performs password cracking
on DS (step �4 ), and gains access to important data
(step�5 ); in the other case, if the WS already has access
privileges to the DS, step�5 can be performed directly.

� The DS is a database server that stores important data
inside the organization. After the WS obtains sensitive
data from the DS (step�6 ), it may further pass sensitive
information to the IU and OI or other hosts (step�7 ).

� OI is a network external to the organization that serves
as a source for attackers to obtain scanning and crack-
ing tools, and may also be used to store sensitive infor-
mation passed from DS.

B. PROBLEM FORMULATION

Based on the above model, we now describe the definition of
a web back-end database leakage incident reconstruction
scheme (WeB-DLIR) over unlabeled logs. Important nota-
tions are summarized in Table 1.
Definition 1 (WeB-DLIR). Consider an web-related unla-

beled multi-source log dataset DM=fDm1;Dm2; . . .;Dmng.
We first extract the subset fDmigi2f1;...;ng containing URL
(e.g., web server communication logs) and the subset
fDmjgj2f1;...;ng containing database services (e.g., Mysql
login and operation logs), which are integrated respectively
and denoted respectively as: web front-end dataset
DH=fdh1; dh2; . . .; dhn1g, where each dh is represented as
htih; sip; dip; url; unumi, n1 is the number of DH dataset
records; web back-end dataset DS=fds1; ds2. . .; dsn2g,
where each ds is represented as htih; sip; dip; num; sqlnum;
dbtype; f�1; �2; . . .; �kgi, n2 is the number of DS dataset
records, �i is the other communication statistics for sip and
dip within tih. Our design goals are, in order: 1) identify
abnormal hosts from DH and DS; 2) correlation analysis to
derive and model data leakage attack scenarios; 3) accu-
rately describe and visualize data leakage incidents.

To accomplish the WeB-DLIR task, we define two types
of detection tasks (Definition 2 and Definition 3) and a
modeling task (Definition 4).
Definition 2 (Abnormal behavior detection). Detect anom-

alies for DH and DS, respectively, and obtain DH L0 and
DS L0 with anomaly probability labels. Abnormal behavior
is defined as records that contain malicious communication
payloads or deviate from normal communication patterns.
Definition 3 (Decision fusion). This task aims to correlate

and analyze DH L0 and DS L0 to detect potential time and
host clusters of data leakage incidents, i.e., to obtain a
refined aggregation of correlated abnormal records that are
closely related to data leakage, Dfb, represented as fhtih; sip;
dip; num; tpig, where tp belongs to ftpf ; tpbg, denoting
abnormal web front-end behavior or abnormal web back-
end behavior.
Definition 4 (Attack modeling and scenario reconstruc-

tion). A data leakage incident includes probing, control priv-
ilege acquisition, and access to sensitive data. To model an
attack event from Dfb, visualize the linkage and causal logic
of the anomaly time and action, and then present the main
processes of a data leakage incident. Furthermore, more
detailed and intuitive scenario reconstruction can be
achieved under the assumption of obtaining the host identity
within the organization, which can be easily satisfied in real-
world organizational settings.

IV. PROPOSEDWEB-DLIR SCHEMES

A. OVERVIEW OFWEB-DLIR

The general idea of WeB-DLIR is based on the investigation
steps of cyber forensics [31] and the basic stages of the prob-
lem statement described in Section III. To achieve high-accu-
racy anomaly detection and high-quality reconstruction of
data leakage scenarios, the following four interrelated phases
are involved in WeB-DLIR (shown in Figure 2).
1) Web front-end and back-end anomaly detection: After

pre-processing work such as format conversion, data
cleaning, and feature extraction on the web-related
unlabeled multi-source logs, data are divided into front-
end payload and back-end database access traffic.
Anomaly identification is performed based on neural
network modeling with a pruning strategy and fine-
grained grouping clustering analysis, respectively, and

TABLE 1. Summary of notations.

Notation Description

DM web-related unlabeled multi-source logs
DH / DS unlabelled web front-end / back-end logs
sip / dip / tih source IP / destination IP / time in hours
url Uniform Resource Locator
numðunum) communication amount of sip and dip within tih (with the same url)
sqlnum number of SQL operation statements
dbtype database access type
DNH / DNS subset of abnormal records in DH / DS

Dfb anomaly records with correlated events
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the refined methods aim to reduce false alarm and
reduce the workload of subsequent analysis. We intro-
duce this part in detail in Sections IV-B1 and IV-B2.

2) Decision fusion of anomaly detection results: We pro-
pose a method DFADR for decision fusion of anomaly
detection results at the front and back ends and even at
multiple levels. We extend each time period at the level
closer to the database features by several hours before
and after, and during the interval, find the related
records of the host intersection of multiple levels, i.e.,
the related records of the identified correlated events.
Thus it can target the main time periods, the participat-
ing abnormal hosts, and the corresponding abnormal
types for attack modeling and data leakage scenario
reconstruction. We introduce this part in Section IV-B3
in detail.

3) Data leakage attack modeling: We propose an auto-
matic attack modeling method based on attack graphs.
The correlated events obtained by decision fusion are
visualized as directed graphs with weights, distinguish-
ing anomaly types and reflecting causality. The attack
scenarios of web data leakage incidents are obtained by
finding the maximum connected subgraphs that satisfy
some conditions. The connections of different anomaly
stages and the basic process of data leakage incidents
are presented in the visualization interface. We intro-
duce this part in detail in Section IV-B3.

4) Data leakage scenario reconstruction: Based on the
attack modeling results, the data leakage incident sce-
nario is initially depicted. In addition, the relevant logs
of the hosts that eventually constitute the complete
attack scenario are audited in the corresponding time
period. Combined with the knowledge of basic settings
within the organization, it allows for a more detailed
picture of the data leakage scenario, thus completing
the reconstruction.

Remark. Our WeB-DLIR overcomes the challenges posed
by unlabeled logs with: 1) change of focus perspective: the
main subtasks we accomplish are detecting hosts related to
abnormal behavior and detecting correlated events, i.e., only
data related to detection content is extracted from unlabeled
logs; 2) design of the methods: for web front-end payloads, it
is possible to collect some payloads of positive and negative
samples, making the web front-end anomaly detection in a
supervised learning manner. Moreover, a pruning strategy is
added to mitigate the false alarms caused by the discrepancy
between the collected samples and the detected samples. For
web back-end features, we use fine-grained grouping fol-
lowed by unsupervised clustering. Our decision fusion and
attack modeling methods are also designed to apply to unla-
beled logs; 3) utilization of prior information: using basic set-
tings within the organization or analysis of communication
patterns from prior work can provide us with some guidance
for unsupervised anomaly detection, decision fusion, and
attack modeling. Note that these guidelines are not directly
for the analyzed data, i.e., unlabeled logs.
The submodules in WeB-DLIR, i.e., the series of methods

proposed in Section IV-B below, are sequentially related and
correspond sequentially to the design goals described in our
problem formulation. Specifically, anomaly detection identi-
fies abnormal events at the web front and back ends, which
provide analytical data for subsequent stages; decision fusion
reduces redundant abnormal events and identifies correlated
events, followed by attack modeling to visualize and model
the discovered correlated events. In addition, our framework
does not include a detailed description of multi-source log
feature extraction and auditing logs when reconstructing data
leakage scenarios. In general, the pre-processing steps and
manual auditing phases vary by specific logs.

B. ARCHITECTURE OFWEB-DLIR

In this section, we introduce the submodules of WeB-DLIR
in detail.

B.1 WEB FRONT-ENDANOMALY DETECTION BASED ON

BLSTM-CNN AND PRUNING STRATEGY

Since attack techniques such as SQL injection and XSS
launched from the web front-end are often realized through
URLs [32], this paper mainly analyzes the payloads from
URLs. The basic format of URLs is http://host:<
port>/<path>?<param>, <port> is 80 by default,
/<path>?<param> is optional. SQL injection and other
malicious behaviors are often characterized in the <path>
and <param> parts.
As we discuss in Section II-A, we use the BLSTM-CNN

model for URL anomaly detection. Specifically, the CNN
mainly extracts the local features of URL text and loses
some information on URL sequence, which leads to the
degradation of the recognition effect. If the BLSTM is
added after the CNN, it cannot fully utilize the capability
of the BLSTM. Conversely, by attaching BLSTM before
CNN, BLSTM acts as an encoder to generate sequence

FIGURE 2. Overview of WeB-DLIR’s architecture. The associa-

tions between the different phases are expressed by dashed

lines.
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features. Each symbol in the URL sequence contains infor-
mation about the symbol’s context after processing, and
the CNN can use a richer representation than the original
input to find significant information and thus can obtain
better accuracy.
The description of the BLSTM-CNN-based payload

anomaly detection method is shown in Algorithm 1. It
uses the Tokenizer function, Pad Sequences function, and
Predict function of Keras [33], and BLSTM-CNN is also
built upon Keras. First, the unlabeled URLs to be detected
are extracted from the web front-end logs, and the normal
and abnormal URL samples collected extensively are
joined into a dictionary.1 The dictionary and the URLs to
be detected are split into sequences of character-level
tokens and digitally processed by the Tokenizer function.
Then the sequence length is aligned by the Pad Sequences
function to obtain the training set called Train and the set
to be detected called Test. A BLSTM-CNN hybrid model
is constructed for Train training, followed by a prediction
of Test. Finally, the web front-end dataset is returned with
anomaly probabilities and is sorted from highest to lowest
anomaly probability. A more detailed procedure for build-
ing BLSTM-CNN and detecting abnormal URLs is given
in the Appendix, (available online).

Algorithm 1. Payload Anomaly Detection Based on
BLSTM-CNN

Input: Web front-end dataset DH ¼ fhtih; sip; dip; url;
unumig; Normal URL request sample set Gq;
Abnormal URL request sample set Bq; Sequence
maximum lengthMaxlen.

Output: Dataset labeled with anomaly probability DH

L0¼fhtih; sip; dip; url; unum; prol0ig.
1: DHU  url in DH ;
2: Dt  Gq [ Bq;
3: SeqDt  TokenizerðDtÞ and SeqDHU

 TokenizerðDHUÞ;
4: Train Pad SequencesðSeqDt;MaxlenÞ and Test  

Pad SequencesðSeqDHU
;MaxlenÞ;

5: Building a BLSTM-CNN hybrid model called BC;
6: Model BCðTrainÞ;
7: prol0  Model:PredictðTest¼ 0Þ;
8: DH L0  DH þ prol0;
9: Sorting DH L0 by Label from largest to smallest.

Algorithm 1 can detect communication records containing
malicious URLs. However, we note that in practice, there are
normal scanners that frequently and extensively scan and
probe important assets in the organization, to ensure that
these hosts are not vulnerable [34]. The ”normal” communi-
cation records during the scanning process may be identified
by intelligent detection methods as ”malicious” URLs, which
makes the false alarm rate of the detector too high and can
cause a great disruption to the completion of WeB-DLIR
tasks.

To address the misjudgment of normal scanners and serv-
ers when identifying malicious URLs, we propose to add a
pruning strategy, concluded in Algorithm 2, which can
exclude normal scanners and normal scan records, making
the web front-end anomaly detection more accurate. Specifi-
cally, we first group (Gpby) the sips in the top 50% of DH L0
after the judgment of Algorithm 1, and delete (Drop) those
sips with the lowest number of tih communications or dip
communications, which will not become candidate scanners.
This is because the scanner has the characteristics of acting
as sips, communicating with multiple dips in multiple time
periods. Then use Sum to calculate the sum of communica-
tion unum, and Uniq to calculate the number of different
communication tih and dip for each group. The statistics can
be summed by assigning weights to them according to the
actual organizational situation, and the sips with high scores
are most likely to be scanners within the organization. Next,
the communication records associated with these sips are
deleted from DH L0 based on the number of scanners to be
removed. That is, the scanner hosts and the corresponding
communication hosts are not considered abnormal.

Algorithm 2. Pruning Strategy After Anomaly Detection

Input: Dataset labeled with anomaly probability DH L0 ¼
fhtih; sip; dip; url; unum; prol0ig; Number of scan-
ners to be pruned DelNum.

Output: Dataset DH L0 after pruning.
1: DPrun DH L0½prol0 > 0:5�;
2: GS GpbyðDPrun; sipÞ;
3: Initializ Dst to keep the statistic of GS;
4: for i 1 to LenðGSÞ do
5: sipi  GSi ½sip�, unumsi  SumðGSi ½unum�Þ, nhi  

UniqðGSi ½tih�Þ, npi  UniqðGSi ½dip�Þ;
6: Dst  Dst:appendðhsipi; nhi; npi; unumsii);
7: end
8: Normalize nh; np and unums in Dst to 0-1;
9: Dst  DropðDst;Dst½nh� ¼ 0Þ, Dst  DropðDst;Dst

½np� ¼ 0Þ;
10: Dst½score�  Dst½nh� þ Dst½np� þ Dst½unums�;
11: Sorting Dst by score from largest to smallest;
12: Delips  Dst½0 : DelNum�½sip�;
13: DH L0  DropðDH L0;DH L0½sip� in DelipsÞ.

B.2 WEB BACK-ENDANOMALY DETECTION BASED ON

FINE-GRAINED GROUPING CLUSTERING

As we discuss in Section II-A, we propose a fine-grained
grouping clustering (FGC) strategy to detect anomalies in the
database access characteristics of the web back-end. The
essential motivation for our fine-grained grouping is that the
database access characteristics under different groupings
have large differences, making it difficult to share the same
clustering metric.
Definition 5 (Distance between samples). Given a data-

base access characteristic dataset DS ¼ fds1; ds2; . . . ; dsng
with p feature attributes fb1; . . . ; bpg. For data points dsi1http://www.secrepo.com/; https://github.com/foospidy/payloads
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and dsj, define the euclidean distance metric between the two
points as

dsi � dsj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp
z¼1
ðdsiz � dsjzÞ2

vuut ; (1)

where i; j ¼ 1; 2. . .; n. As shown in Algorithm 3, the steps
of the fine-grained grouping clustering for DS are as
follows.
1) Data feature processing: Divide hour and day from tih

(Ghour and Gday); calculate the Sum of num; sqlnum
and different day numbers nd for each group of
hsip; dipi in DS; use IP conversion function (IP Int) to
convert sip and dip into integer values; divide DS into
different subsets fDSig according to dbtype type.

2) Fine-grained grouping: For each DSi , groups are created
according to �1 hhour; sip; dipi, �2 hsipi, and �3 hdipi,
respectively, and features to be clustered are extracted.
Specifically,�1 is mainly concerned with the communi-
cation behavior of each pair of hhour; sip; dipi, with p1
clustering features and K1 number of clusters. K1 is rec-
ommended to be 2 because there are generally two
types of communication behaviors: weekdays and rest
days; �2 and �3 are concerned with the change of the
communication object of each IP, with p2 clustering
features and K2 number of clusters. K2 is recommended
to be 1 because the normal communication objects
within the organization are more fixed.

3) Clustering: Kmeans (Km) is utilized to cluster the fea-
ture items grouped according to �1�2�3 respectively.
The values of each feature term are normalized to the
0-x interval before clustering. The distance between
each record and its clustering center, called the outlier
score (outs), is then calculated according to Equation (1)
(referred to as a function Gouts). The maximum value
of outs for records with p clustering features is less thanffiffiffiffiffiffiffi

px2
p

.
4) Abnormal score calculation: For �1 , the anomaly

score is equal to outs, while the anomaly score of
�2�3 is outs divided by the different communication
days (nd) of each hsip; dipi group to reduce the
anomaly score of fixed communication objects, i.e.,
normal hosts. Then assign �1 and �2�3 weights as v1,
va � v2 respectively, and calculate the anomaly
score (abs) of each record of DSi according to the
Equation (2). Finally, integrate each DSi to get the
anomaly score of each record in DS.

The anomaly score for records in each DSi is calculated as

DSi ½abs� ¼v1 � G1½outs� þ vav2 � ðG2½outs�=G2½nd�Þ
þ vav2 � ðG3½outs�=G3½nd�Þ;

(2)

where va is calculated as

va ¼
ffiffiffiffiffiffiffiffiffiffiffi
jp1jx2

p
=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2jx2=

p
ndminÞ; (3)

where ndmin is the minimum number of communication days
among all hsip; dipi in DS. Since we divide by nd when cal-
culating the G2 and G3 anomaly scores, we construct va this
way in order to keep the anomaly metric range of G1 and G2,
G3 as close as possible before weighting.
Note that after the fine-grained grouping, the number of

clusters is small, thus reducing the time to find and determine
the number of clusters and cluster centers. The administrator
can easily give K1, K2 and v1, v2 depending on the underly-
ing settings within the organization, so our fine-grained
grouping method is K-free in this case, which means FGC
doesn’t need to bother with choosing K.

Algorithm 3. Anomaly Detection of Database Access Char-
acteristics Based on Fine-Grained Grouping Clustering

Input: Web back-end dataset DS; Number of clusters and
weights for each group K1;K2, v1;v2.

Output: Dataset labeled with anomaly probability DS L0.
1: DS½hour�  GhourðDS½tih�Þ, DS½day�  GdayðDS½tih�Þ;
2: Gsd  GpbyðDS; hsip; dipiÞ;
3: for i 1 to LenðGsdÞ do
4: DS½hsip; dipi ¼ Gsdi �½nums; sqlnums�  SumðGsdi ½num;

sqlnum�Þ;
5: DS½hsip; dipi ¼ Gsdi �½nd�  UniqðGsdi ½day�Þ;
6: end
7: DS½sip�;DS½dip�  IP IntðDS½sip�;DS½dip�Þ;
8: fDSig  GpbyðDS; dbtypeÞ;
9: Initialize DS L0 to keep DSi with calculated anomaly

scores;
10: for i 1 to LenðfDSigÞ do
11: G1  GpbyðDSi ; hhour; sip; dipiÞÞ;
12: G2  GpbyðDSi ; sipÞÞ, G3  GpbyðDSi ; dipÞÞ;
13: for each G1z ;G2j ;G3k in G1;G2;G3 do
14: if LenðG1zÞ < K1 then K1 ¼ 1, G1z ½outs�  Gouts

ðKm ðK1;G1z ½p1�ÞÞ;
15: if LenðG2jÞ < K2 then K2 ¼ 1,G2j ½outs�  Gouts

ðKmðK2;G2j ½p2�ÞÞ;
16: if LenðG3k Þ < K2 then K2 ¼ 1, G3k ½outs�  Gouts

ðKmðK2;G3k ½p2�ÞÞ;
17: end
18: Calculate DSi ½abs� according to (2);
19: DS L0  DS L0:appendðDSiÞ;
20: end
21: Sorting DS L0 by abs from largest to smallest.

B.3 DFADR ANDATTACK MODELING

By correlating and fusing the output results of web front-end
and back-end anomaly detection, the abnormal time period
of web data leakage incidents and closely related abnormal
hosts can be effectively extracted. Therefore, we propose an
approach for decision fusion of anomaly detection results
(DFADR).
The description of the DFADR method is shown in Algo-

rithm 4. In order not to miss any abnormal hosts, we first use
the known information of the actual abnormal hosts in the
front-end and back-end to find the discriminant threshold
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that can make the abnormal host detection rate reach 1 from
DH L0 and DS L0, respectively. Then the datasets DRH and
DRS, consisting of records under the discriminant thresholds,
are used as the analysis data for DFADR. Both DRH and
DRS only keep the four information htih; sip; dip; numi for
correlation analysis. As our objective is the analysis of data-
base leakage incidents, DFADR takes the anomaly detection
results at the level of database access characteristics as the
core. That is, the web back-end abnormal behavior is neces-
sary to constitute a correlation event. We analyze each
non-repeating time period ti of DRS (by Dedup) and the cor-
responding record DRSi , and use the range of t hours before
and after ti to find the corresponding records DRHi in DRH .
Keep the records with IP intersection in DRHi and DRSi ,
denoted as DFHi and DFSi , where IP intersection IPinters is
defined as

IPinters¼ðDRHi ½sip�\DRSi ½sip�Þ [ ðDRHi ½sip�\DRSi ½dip�Þ
[ðDRHi ½dip�\DRSi ½sip�Þ [ ðDRHi ½dip�\DRSi ½dip�Þ; (4)

Finally, each IP and the Sum of num (nums) are extracted
from DFHi and DFSi , and nums is normalized as the anomaly
score.

Algorithm 4. Decision Fusion of Anomaly Detection Results
(DFADR)

Input: The detected abnormal result datasets DRH and DRS,
with htih; sip; dip; numi format; the extended time
range t.

Output: Abnormal host and abnormal probability of corre-
lated events DFip ns; the correlated event-related
log records Dfb.

1: Initialize DFH and DFS to save records with correlated
events;

2: for ti in DedupðDRS½tih�Þ do
3: DRHi  DRH ½ti � t � tih � ti þ t�;
4: DRSi  DRS½tih ¼ ti�;
5: DFHi  DRHi ½sip or dip in IPinters�;
6: DFSi  DRSi ½sip or dip in IPinters�;
7: DFH  DFH :appendðDFHiÞ;
8: DFS  DFS:appendðDFSiÞ;
9: end
10: DFip ns½IP; nums�  DFH ½sip; SumðnumÞ� [ DFH ½dip;

SumðnumÞ� [ DFS½sip; SumðnumÞ� [ DFS½dip; Sum
ðnumÞ�;

11: Dfb½tih; sip; dip; num; tp�  DFH ½tih; sip; dip; num; 00tp00f �
[ DFS½tih; sip; dip; num; 00tp00b�;

12: Normalize DFip ns½nums�, Dfb½num�.

The DFADR algorithm can correlate the anomaly detec-
tion results at each level to eliminate anomaly redundancy,
and can further identify abnormal time periods and abnor-
mal hosts that are closely related to web-based data leakage
incidents, providing basic support for attack modeling.
Moreover, abnormal events with correlation in multiple lev-
els can be found by taking the abnormal time of the latter

level as an extension point. Based on this idea, our DFADR
can be extended to the fusion of anomaly detection results
at multiple levels, which enhances the scalability of WeB-
DLIR.

Algorithm 5. Attack Modeling

Input: Abnormal host and abnormal probability of correlated
events DFip ns ¼ fhIP; numsig; the correlated event-
related log records Dfb ¼ fhtih; sip; dip; num; tpig.

Output: Attack Graph.
1: for i 1 to LenðDFip nsÞ do
2: ipi  DFip nsi½IP�, sipi  DFip nsi½IP�;
3: sizeni  DFip nsi½nums�, colorni  Col1ðipiÞ;
4: Initialize Ldipi, Lsizei, Ltihi, Lcolori as lists;

5: for j 1 to LenðDfbÞ do
6: if Dfbj ½sip� ¼ ipi then

7: if Dfbj ½dip� in Ldipi then

8: pos ¼ Ldipi:indexðDfbj ½dip�Þ;
9: Lsizei½pos�  Lsizei½pos� þ Dfbj ½num�;
10: Ltihi½pos�  Ltihi½pos�þ00;00 þDfbj ½tih�;
11: end
12: else
13: Ldipi  Ldipi:appendðDfbj ½dip�Þ, Ltihi  Ltihi:

appendðDfbj ½tih�Þ, Lsizei  Lsizei:append ðDfbj
½num�Þ, Lcolori  Lcolori:appendðCol2 ðDfbj
½tp�ÞÞ;

14: end
15: end
16: end
17: nodei  hipi; sizeni ; colornii;
18: linki  hsipi; Ldipi; Lsizei; Ltihi; Lcolorii;
19: end
20: Drawing attack graphs based on force-directed algorithms.

After decision fusion, to visualize the time, process, and
abnormal host situation of the attack and reconstruct the data
leakage scenario, we propose an attack graph-based model-
ing method that can automatically build a visualization with
rich information based on the results obtained from the previ-
ous anomaly detection and decision fusion.
Definition 6 (Attack Graphs). The attack graph of a data

leakage incident consists of nodes=fhip; sizen; colornig and
connection lines links=fhsip; dip; sizel; tih; colorlig. As for
the links, the direction of the arrow distinguishes sip and
dip, and the label on the connection line carries the tih set of
communication. The sizen is mapped to the size of the node
token, which indicates the size of the abnormal traffic, colorn
is used to distinguish between intranet and extranet IP; sizel
is mapped to the thickness of the line segment, i.e., the
weight, which indicates the abnormal traffic between sip and
dip within tih, and colorl indicates whether the abnormal
level is web front-end or web back-end.
The process of automatically constructing the attack grid

graph is shown in Algorithm 5. First, each IP is extracted
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from DFip ns as sipi and the corresponding numsi as sizeni ,
and then mapped to colorni (Col1 function) according to the
network segment of the IP address. Corresponding to sipi,
we extract lists Ldipi, Lsizei, Ltihi, and Lcolori from Dfb,
where num with the same dip is accumulated as Lsizei, tih
with the same dip is spliced as Ltihi, and Lcolori is obtained
by mapping the tp types to different colors (Col2 function).
Finally, the obtained nodes and links are visualized based on
the force-oriented graph algorithm, which is a popular rela-
tional graph layout that supports interactivity [35].
After constructing the basic attack graph, we define the types

of correlation events present in the attack graph as follows.
Definition 7 (Correlation event types in attack graphs).

With the assumption that the database server would not initi-
ate requests, four fundamental types of correlation events in
the attack graph can be classified (Figure 3). Case(1) is a
load-injected B making database access to D, which is a
sequential correlation; Case(2) is multiple attackers or
multiple hosts under attack teaming up to attack the database;
Case(3) is attacker A communicates abnormally with extra-
net host C and then accesses the database server abnormally;
Case(4) is a random attempt or undifferentiated attack by a
single attacker A, which does not form a strong association.
As described in Section III, a data leakage incident

includes complex multiple correlation steps, so we regard the
maximum connected subgraph within the Case(1),(2),

(3) condition in the attack graph as the attack scenario of
the data leakage incident. The attack garph constructs a sce-
nario from the perspectives of abnormal time sequences, par-
ticipating abnormal hosts, and abnormal event causality in
different attack phases. Specifically, directed edges with the
concept of time span and IP information of the starting and
ending hosts represent the communication relationship
among abnormal hosts, and different abnormal types are
identified by the color of line segments. In addition, the prob-
lem of finding attack scenarios for data leakage incidents is
finally formalized as finding the maximum connected sub-
graph that satisfies the conditions. Note that after anomaly
detection and decision fusion, the final attack graph is more
concise, and hence the data leakage scenario can be found
quickly after much less disturbance.

V. EVALUATION

In this section, we evaluate the performance of WeB-DLIR.

A. COMPARATIVE ANALYSIS

Here, we compare our WeB-DLIR with the existing works
related to web back-end database leakage [1], [5]–[7] and

attack incident scenario reconstruction [8], [9], as there are
currently no studies closely related to web back-end database
leakage incident reconstruction.
In the web back-end database leak detection (short for

DLD) research, Costante et al. [1] detected potential data
leakage by detecting anomalies in database transactions and
introduced a feedback mechanism that was able to reduce the
number of false positives. However, the scheme of [1] is
unable to detect anomalies at multiple levels and cannot han-
dle unlabelled data, in contrast to our WeB-DLIR. Different
from [1], Li et al. [5] designed several analyzers for multi-
source security logs, which include anomaly identification in
an unsupervised method, but a lot of feature extraction work
is required. Moreover, for both [1], [5], the methods to
reduce the false positive rate are based on feedback from ana-
lysts or experts, while WeB-DLIR is automated through a
decision fusion algorithm. Furthermore, the DLD approaches
do not focus on attack modeling and scenario reconstruction.
In web back-end database leakage forensics (short for DLF)
research, Latib et al. [6] provided an investigation result for
web intrusion in a Big Data environment by analyzing web
logs. Yu et al. [7] visualized the propagation path of sensitive
data. However, they both studied just a part of the forensic
work, while our WeB-DLIR is more comprehensive. In terms
of attack incident reconstruction (short for AIR), Hossain
et al. [8] used multiple strategies for attack detection and
were able to avoid some false positives. In [8], the attack
modeling can support the scenario reconstruction, but it does
not construct a more intuitive and clear topological map of
the scenario as our WeB-DLIR does. Pei et al. [9], on the
other hand, proposed a multi-stage log-based intrusion analy-
sis system to reconstruct attack behaviors to discover attack
communities with a low positive rate. However, [8] and [9]
have a common drawback that cannot process unlabeled
data. In WeB-DLIR, we perform different levels of anomaly
detection on unlabeled multi-source logs and achieve data
leakage incident scenario reconstruction (short for DLIR)
based on attack modeling. We also pay attention to reducing
the false alarm rate and remark that our WeB-DLIR can be
extended to multi-level anomaly detection. A comparative
summary of these works is shown in Table 2.
It shows that there are currently no solutions that can be

directly applied to our application situations and no related
works available for experimental comparison. Therefore, in the
following experiments, when implementing the WeB-DLIR
submodules, methods that can be applied to solve the problems
of these submodules are taken for comparison, including popu-
lar machine learning techniques or existing schemes.

B. EXPERIMENTAL DATASETS AND METRICS

B.1 DATASETS

The datasets that can be used to evaluate our proposed WeB-
DLIR should satisfy the following conditions:
1) The datasets should contain web-related multi-source

log files during web back-end database leakage
incidents.

FIGURE 3. Correlation event types in attack graphs (t1 � t2).
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2) The datasets may be unlabeled but should have a score or
metric for reconstructing the final data leakage scenario.

In the field of cybersecurity, to the best of our knowledge,
there are currently no known public datasets that meet both
of the above conditions. Therefore, we choose log records
from an enterprise during a web back-end data leakage inci-
dent, which can be obtained through a competition held by
CCF.2 The log files include data records of header in HTTP
requests (Flow) and traffic records of database login and
operation execution (Login and Db). The details of the
obtained original compressed files are shown in Table 3.
Pre-Processing. For the mentioned logs, all files are first

converted to CSV format uniformly and then stored in the
Mysql database by Flow, Login and Db categories for analy-
sis. We use database commands to exclude logs with missing
important fields (e.g., URL) to prevent data flooding. As the
attack model described in Section III-A, the data leakage
occurs around the servers inside the organization, so we keep
records containing all server IP addresses (487 IPs), which is
known from the Preliminary Round of the competition. Fur-
ther, we extract the dataset (DH) containing web front-end
payload features from the Flow records remained, and the
dataset (DS) of web back-end database access features from
the Login and Db records remained. Specifically, we extract
tih, sip, dip, url, unum from Flow logs and tih, sip, dip, num,
sqlnum, dbtype (here are login or db), number of different
communication source ports (difsport), password (difpw),
information (difinfo), username (difuser), and database
access information (difsqlinfo) for each htih; sip; dipi from
Login and Db logs. The details of the obtained experimental
dataset are shown in Table 4.

B.2 METRICS

Corresponding to the detection tasks and modeling task
defined in Section III-B, the experimental evaluation is divided
into two parts: 1) In the web front-end and back-end anomaly
detection task, the main evaluation is on the identification

effect of abnormal hosts at the corresponding level; in the
anomaly detection result decision fusion task, the main evalua-
tion is the recognition effect of abnormal hosts closely related
to the data leakage incident; 2) In attack scenario modeling and
data leakage incident scenario reconstruction, the main evalua-
tion is the intuitive rendering ability of attack graph and the
degree of reconstruction of the data leakage incident.
Since the original datasets are unlabeled, the above two

evaluations are mainly based on the expert scoring of the
final results of the competition proposal.3 In order to quantify
the evaluation metrics, based on the final results, we give in
Table 5 the number of normal and abnormal hosts and abnor-
mal time periods for the front and back ends and the data
leakage incident.4 Particularly, there are many abnormal
events at the web front and back ends, and there are no cen-
tralized abnormal time periods, while the number of normal
hosts for data leakage incidents depends on the detection
results at the web front and back ends.
The first part of the evaluation can be viewed as a binary

classification task. We now define TP, FN and TN, FP as fol-
lows: the actual abnormal hosts are classified as abnormal
hosts, normal hosts; the actual normal hosts are classified as
normal hosts, abnormal hosts. From this, the detection rate,
i.e., Recall (R) or True Positive Rate (TPR), Precision (P),
and False Positive Rate (FPR) can be defined as shown in
Equation (5). Since abnormal hosts account for only a small
fraction of the hosts, we plot TPR-FPR curves (also called
ROC) to measure the overall effect of classification and the
Precision-Recall curves (PR) to measure the effect of identi-
fying the imbalance category, which are plotted by varying
parameters such as the anomaly ratio. We then define AUC-
ROC and AUC-PR as the area under the curves.

R ¼ TPR ¼ TP
TPþFN

P ¼ TP
TPþFP

FPR ¼ FP
TNþFP

8><
>:

: (5)

TABLE 2. Comparative summary.

Category/Function [1] [5] [6] [7] [8] [9] Ours

Task DLD DLD DLF DLF AIR AIR DLIR
Analyzed Data Database

Transactions
Multi-source
Security Logs

Web
Logs

Sensitive
Data

Attack
Datasets

Multiple
System Logs

Multi-source Web-
related Logs

Process Unlabeled Data � ✓ � � � � ✓
Anomaly Detection ✓ ✓ ✓ � ✓ � ✓
Level of Anomaly Detection (if
Any)

One Multiple One N.A. Multiple N.A. Multiple

Reduce False Alarms ✓ ✓ � � ✓ ✓ ✓
Attack Modeling � � � ✓ ✓ � ✓
Support Scenario Reconstruction � � � � ✓ ✓ ✓
Available for Experimental
Comparison with Ours

� � � � � � N.A.

’N.A.’ denotes not comparable.

2Available at https://www.datafountain.cn/competitions/358. We used the
data provided by the Semi-final round

3https://discussion.datafountain.cn/questions/2252/answers/23376
4More specific information such as the host IP can be found in our source
code, available at https://github.com/Cristliu/WeB-DLIR
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C. EXPERIMENTAL SETTINGS AND RESULTS

First, anomaly detection is performed for DH and DS respec-
tively, and widely used or representative anomaly detection
models are experimentally compared. Then, the DFADR
method is performed on anomaly detection results to verify
the necessity and effectiveness of correlation analysis and
decision fusion. Finally, the attack graph realizes the model-
ing of the attack scenario, and then we analyze the relevant
log data of the attack graph to realize the reconstruction of
the data leakage incident.
We trained and tested models for the web front-end level

on a workstation with a Tesla P100-PCIE GPU and Intel(R)
Xeon(R) CPU E5-2620 v4 CPU @2.10 GHz, and the rest of
the experiments were performed on the same local machine
(lntel(R) Core(TM) i5-9500F CPU @3.00 GHz; 8 GB
RAM), and all methods are implemented in Python.

C.1 ANOMALY DETECTION RESULTS

(1) Web Front-End Payload Anomaly Detection. BLSTM-
CNN is compared with six methods, including BLSTM,
CNN, and CNN-BLSTM, which are also families of neural
networks. As well as the widely used SVM model, Random
Forest (RF), an ensemble learning method based on bagging
that achieved the best classification performance in [36], and
XGBoost (XGB), used by Chen et al. [15], which uses an
enhanced ensemble learning technique.
Settings. The neural network models are implemented using

Keras. We choose Adam, an efficient optimizer capable of
adapting the learning rate, as the optimizer [37]. We use the
default parameter of Adam provided by Keras, i.e., learning
rate lr ¼ 0:001, which follows the value provided in [37]. The
loss function used is binary crossentropy, as it is more suit-
able for binary classification problems. Specifically, the size
of the embedding layer is 200� 100, and the memory cells in
LSTM are set to 64, which means the output dimension is
200� 128 through the bidirectional LSTM. 128 filters are
used in the convolutional layer and the length of the convolu-
tional window is taken as 3. The batch size is set to 64 and the

dropout is set to 0.5 to prevent overfitting. The other BLSTM,
CNN, and CNN-BLSTM parameters are similar to BLSTM-
CNN.5 We divide 10% from the training set as the validation
set and then determine the appropriate epochs by the variation
of the loss function and validation accuracy with epochs. As
shown in Figure 4, the loss of training set and accuracy of vali-
dation set converge gradually around the 7th epoch and fluctu-
ate after that, so we set the epoch to 7. The remaining
comparison models are implemented based on the Scikit-learn
package and Gensim package. The SVM uses the ”Linear”
kernel function, and other kernel functions such as ”Gaussian”
functions are discarded because of too long running time.
Depending on the difference between using TfidfVectorizer
and Word2Vec methods to vectorize the URLs representation
for extracting the feature matrix, we denote the comparison
models as XGB_tf, RF_tf, LSVM_tf and XGB_wv, RF_wv,
LSVM_wv. We determine the parameters that work better by
convergence or by their effectiveness on the validation set.
To evaluate the effectiveness of Algorithms 1 and 2, we

compare the AUC-ROC and AUC-PR of all models with the
different number of scanners pruned in Figures 5(a) and 5(b).
We can see that: 1) BLSTM-CNN has the best performance in
the front-end anomaly detection, other neural network models
are the next. If a BLSTM is attached after the CNN has
extracted local information, it is just equivalent to attaching a
fully connected layer, which is less effective than preferen-
tially attaching a BLSTM capable of extracting sequence
information in front of the CNN [20]. The results of RF,
XGB, and LSVM implemented based on the TfidfVectorizer
method are generally better than those implemented based on
Word2Vec. Word2Vec makes the models based on it less effi-
cient because of more complex parameter setting; 2) The

TABLE 3. The details of the original compressed files.

Data Number of Files Record Size

Flow 40 23,834,302 1.06 GB
Login 2 10,027,010 176 MB
Db 2 3,878,893 21.9 MB

TABLE 4. Experimental data set details.

Data Record Feature Num. of hosts Size

DH 993,923 tih; sip; dip; url; unum 867 157 MB
tih; sip; dip; num; sqlnum;

DS 1630 dbtype; difsport; difpw; 35 118 KB
difinfo; difuser; difsqlinfo

FIGURE 4. Determination of epoch.

TABLE 5. The correct results.

Type Front-end Back-end Data Leakage
Incident

Num. of Nor. Hosts 841 25 N.A.
Num. of Abnor. Hosts 26 10 7
Abnormal Time N.A. N.A. June 11,

18:00-22:00

5More detailed model settings can be found in the WeB-DLIR/1_Front_End/
images folder of our source code
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AUC-ROC and AUC-PR of most models increase and then
decrease with the number of prunings, and the highest AUC
value is taken at DelNum ¼ 3. Therefore, the number of scan-
ners in DH is most likely to be 3. When DelNum � 3, the
pruning strategy can delete misidentified scanner-related
records and thus increase the AUCs. But after that, the pruning
strategy removes too many abnormal hosts, resulting in the
failure to reach R ¼ TPR ¼ 1, and thus the AUC values
decrease; 3) The anomaly detection results at the web front-
end payload level also have a low AUC-PR, mainly because
the unlabeled data to be detected in the actual environment is
more complex than the training set we constructed, indicating
that other levels of anomaly detection need to be correlated to
more accurately analyze data leakage incidents.
We further compare the ROC and PR curves without prun-

ing strategy (P0) and when DelNum ¼ 3 (P3). As shown in
Figures 5(c) and 5(d), the increase in AUCs brought by the
pruning strategy is mainly in terms of lower FPR and higher
P. It shows that a proper pruning strategy can reduce the false
alarm rate of anomaly detection, improve the performance of
the model, and reduce the subsequent workload on false
alarm troubleshooting.
(2) Web Back-End Database Access Anomaly Detection.

FGC is compared with six unsupervised methods widely
used for anomaly detection, including the baseline model
Kmeans, Kmeans++, Canopy-Kmeans which can determine
the initial centroids and the number of clusters for Kmeans to
improve the efficiency of clustering [38], the density cluster-
ing-based DBSCAN used by Ramachandran et al. [39] for
clustering to detect database intrusions, the local outlier fac-
tor (LOF) algorithm applied by Kim et al. [40] to capture

anomalous database access logs, and the ensemble-based
outlier detection method iForest used by Gavai et al. [41] to
identify anomalous events.
Settings. The implementation of FGC is detailed in

Section IV-B2. We use the normalization interval 0-1 and
then discuss the impact of K1, K2, v1 and v2 on the effect of
FGC, and we also compare the difference between Kmeans
and Kmeans++ as our clustering methods in FGC. The rest
of the methods are implemented based on the Scikit-learn
package. For Kmeans, Kmeans++, and Canopy-Kmeans, we
use the same anomaly score measure as FGC, and the K
value for Kmeans and Kmeans++ is determined based on the
elbow method. DBSCAN, LOF, and iForest discriminate
outliers as abnormal records.
The comparison results are shown in Figure 6. In Figures 6

(a) and 6(b), we compare the AUCs of FGC under different
K1;K2 combinations using the ratio of v1 to v2 as the hori-
zontal coordinate, where the abbreviation K11 is used to rep-
resent K1 ¼ 1 and K2 ¼ 1. Other K1;K2 combinations are
not plotted because the effect is lower than either of the com-
binations shown in the figure. We can see that: 1) better
results can be obtained when K1 � K2 and the best results
are obtained when K1 ¼ 2 and K2 ¼ 1. It shows that the
htih; sip; dipi communication mode indicated by K1 is mainly
divided into two categories, while the host communication
mode indicated by K2 is more fixed within the enterprise; 2)
the value of AUCs decreases as the ratio of v1/v2 increases.
It shows that the value of v2 should be larger than v1, that is,
for this case, the host communication mode is more impor-
tant than the htih; sip; dipi communication mode. As shown
in Figure 6 c: 1) Using Kmeans++ (kmp) or Kmeans (km) as

FIGURE 5. Evaluation of web front-end anomaly detection.

FIGURE 6. Evaluation of web back-end anomaly detection.
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our base clustering method has no effect on the AUC values,
and our choice of FGC_km reduces the time efficiency due
to the extra processing time required by Kmeans++; 2)
Although other models can complete anomaly detection in a
short time, they are even less effective than the average effect
of our FGC under unknown conditions (FGC km all) due to
coarse-grained detection and more complex parameter set-
tings. In particular, Canopy-Kmeans without guidelines is
worse than Kmeans with K determined by the elbow method
because of the uncertainty in parameter selection.
From the above discussion, it can be observed that our

FGC algorithm can obtain the optimal anomaly detection
model within a very small range of clusters by fine-grained
grouping. Moreover, in practical applications, the values of
K1, K2, v1, and v2 can be easily given by the administrator
within the organization, and the average effect of FGC can
reach AUC > 0:9 when the administrator knows the basic
settings of K1 ¼ 2, K2 ¼ 1 and v1 � v2.

C.2 DECISION FUSION RESULTS ANDATTACKGRAPH

In data leakage incident analysis, the abnormal host informa-
tion at the front and back end of the web can be regarded as
known prior information. Therefore, the detection results to
be decision fused come from the BLSTM-CNN with
DelNum ¼ 3 strategy and the FGC km K21 v1 � v2 strat-
egy that can achieve better results at each level. As described
in Section IV-B3, in order not to miss abnormal hosts, we use
the abnormal records DRH and DRS under the discriminant
threshold of reaching R ¼ 1 at the respective levels as the
analysis data for DFADR. After decision fusion, the attack
graph is automatically visualized based on Algorithm 5.
Settings. For t, the only parameter of DFADR, we discuss

the effect of decision fusion when t=0-50. When t is close to
0, DFADR is more likely to detect data leakage incidents
that are concentrated in a very short time, while when t is
larger, it is more suitable for more complex data leakage inci-
dents of longer duration. For force-oriented layout-based
attack graphs, we use the pyecharts6 tool to build and output
the scene graph in HTML format.
As shown in Figure 7(a), both AUC-ROC and AUC-PR

rise and then fall with t. Figure 8 shows the attack graphs

when t is 1, 3, 50. To save space, we give a compact version
of the visualization view. The colors and thicknesses of the
attack graph nodes and connection lines follow the descrip-
tion in Definition 6. In particular, the text labels attached to
the connection lines indicate the abbreviation of the commu-
nication tih, e.g., the 11th 19 h to 20 h is indicated as 11d19.
We observe that before t ¼ 3, the AUCs fail to reach 1
because the extended time range is not enough to identify all
the abnormal hosts associated with data leakage incidents,
i.e., R and TPR cannot reach 1. After that, the AUCs remain
at 1 for a long time, which indicates that there are no omis-
sions and no misclassifications in the interval; when the value
of t is larger, there is a decrease in the identification effect at
26, 45, and 50 respectively, which is due to more false posi-
tives, i.e., the events that are unrelated to the data breach but
have a front and back-end correlation are identified.
The above analysis illustrates that there are misclassifica-

tion scenarios when t is selected improperly, which makes it
necessary to continue the troubleshooting audit after decision
fusion. However, benefitting from the intuitive presentation
of the attack graph and the correlation event types in the
attack graph described in Definition 7, we can quickly find
the data leakage event scenario in the visual view. For the
case of t ¼ 50 (shown in Figure 8(c)), the connections of
10.49.231.206 and 10.49.253.194 do not satisfy the condi-
tion of t1 � t2 and do not belong to the category of Case
(1)-(4); the subgraph formed by the three connections
from 10.56.148.238 belongs to the category of Case(4),
but since they all emanate from the same host and do not
communicate with extranet hosts, they do not form a strong
correlation event. On the other hand, the eligible maximum
subgraph of Figure 8(c) is the part with shading on the left,
so we can exclude the other misidentified hosts. Therefore,
when t > 3, the final data leakage incident can also be
locked by visually troubleshooting through the attack graph.
That is, in Figure 7(b), when t � 3, both AUC-ROC and
AUC-PR can reach 1.0 after the attack graph visualization
(AGVis).
Furthermore, in order to compare and highlight the neces-

sity of decision fusion for the identification of abnormal hosts
in data leakage incidents, we use the abnormal hosts of data
leakage to measure the results of single-level and decision
fusion. That is, we evaluate the BLSTM-CNN with a pruning
strategy for the web front-end (WFDR) and the FGC km
strategy for the web back-end (WBDR) using the same 7
hosts from the final data leakage incident as abnormal hosts.
Here we assume that the parameters of both web front-end
and back-end are optimal under the guidance of the adminis-
trator, while DFADR may get the worst results due to the
lack of experience in selecting t. The identification results of
abnormal hosts in data leakage are shown in Table 6, and we
can see that: 1) Decision fusion for the data leakage incident
abnormal host identification is significantly better than the
anomaly detection method with isolated web front-end and
back-end, especially in AUC-PR; 2) the reason for achieving
higher AUC-ROC of WFDR is that there are many normal

FIGURE 7. Evaluation of DFADR and attack graph.

6https://github.com/pyecharts/pyecharts/
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hosts at the web front-end level, and WFDR achieves better
results in most of the normal hosts leading to the improve-
ment of the overall AUC-ROC, but the identification results
of the unbalanced category, i.e., abnormal hosts, are poorer,
which is reflected in the AUC-PR; 3) for WBDR, the AUCs
are less than 0.5, which is due to the fact that many abnormal
hosts of data leakage incidents do not appear in the web
back-end logs.
Discussion. Abnormal hosts in data leakage incidents

may appear only in web front-end logs or in web back-end
logs, e.g., some web servers have only front-end communi-
cation logs, while some database servers’ communication
records appear only in Db logs. It means that measuring
single-level detection results with abnormal hosts in data
leakage incidents, even using a ”perfect” classifier at sin-
gle-level detection, is impossible to achieve 100% correct
evaluation metrics. On the other hand, it explains the
urgent need for multi-level anomaly detection and decision
fusion steps in analyzing data leakage incidents. It is more
important to detect abnormal events that are correlated at
the web front and back ends when making decision fusion.
With the same abnormal hosts as the correlation, it can dif-
fuse to find the cluster of hosts for the data leakage
incident.
In summary, more accurate detection results at each level

will inevitably provide more favorable support for decision
fusion and attack modeling. Moreover, in practical data leak-
age incident analysis, integrated web front and back ends and
even other levels for correlation fusion are necessary and
effective.

C.3 DATA LEAKAGE INCIDENT RECONSTRUCTION

Based on the attack graph and its properties, it can be seen
from Figure 8 b: the time period of the data leakage incident
is between 18:00-22:00. By further auditing the relevant
abnormal host log data, reviewing the basic settings within

the enterprise or analyzing the host communication patterns,
the administrator can know that: 10.49.21.15 is a legitimate
internal enterprise scanner, 10.49.253.233 is a web proxy
server, 10.49.141.206 is a server, 10.49.212.162 is a client
host, 10.49.223.194 is a web server, and 10.49. 253.35 is the
database server. In addition, it can also find communication
logs that do not show web front-end or web back-end anoma-
lies, but nevertheless form a correlation with data leakage
incidents, such as the communications with client host
10.56.144.126. Then, the web back-end database data leak-
age scenario is reconstructed from the attack graph and audit
results, which occurred on June 11, 2019, and the detailed
scenario reconstruction topology is shown in Figure 9. The
basic evolution of this web data leakage is as follows.
1) The attacker manipulated the proxy server 10.49.253.233

to perform a scanning probe on the 10.49.253 network
segment at around 19:00 (step i.).

2) After obtaining the vulnerability information of the
internal enterprise server, 10.49.212.162 executed SQL
injection and other attacks on the web server
10.49.223.194 in 18:00-22:00 (step ii.). During this
period, the enterprise external network was also
accessed to obtain scanning and cracking tools.

3) The attacker manipulated 10.49.141.206 to login the
Mysql server 10.49.253.35 but did not execute SQL-
related commands (step iii.). Subsequently, 10.49.223.194
login and execute SQL commands on 10.49.253.35 (step
iv.), causing an internal data leakage.

4) After 21:00, the enterprise internal scanner 10.49.21.15
discovered vulnerabilities such as SQL injection and
arbitrary code execution in 10.49.223.194 during the
scanning work (step v.), and fixed the vulnerabilities in
time, making the subsequent attack attempt fail.

In addition, we compare our proposed scenario reconstruc-
tion approach with some attack modeling techniques [8],
[29], [30] mentioned in Section II-C, the comparison is sum-
marized as shown in Table 7. Our scheme identifies the
attackers, victims, and other identities of web back-end data-
base leakage incidents. The reconstructed topology diagram
of the data leakage scenario visualizes the time, cause, partic-
ipating hosts, and evolution of the incident. Moreover, the
reconstructed results largely match the actual enterprise data
leakage incident situation, which validates the effectiveness
of our proposed WeB-DLIR in the real-world web security
application.

TABLE 6. Comparation of DFADR andWFDR, WBDR.

Level Num. of Hosts AUC-ROC AUC-PR

DFADR_t0 51 0.8517 0.8517
DFADR_t50 51 0.9481 0.7620
WFDR 867 0.8460 0.5092
WBDR 35 0.4286 0.4286

FIGURE 8. Attack graphs with different t.
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VI. CONCLUSION

In this paper, we proposed WeB-DLIR, a web back-end data-
base leakage incident reconstruction framework over unla-
beled logs, which is designed to enhance the intelligence and
automation of web back-end database leakage scenario recon-
struction in a real-world network environment. To achieve this
goal, we proposed a series of new methods supporting unla-
beled web-related multi-source log anomaly detection, anom-
aly event correlation fusion, attack scenario modeling, and
data leakage scenario reconstruction. The utility and practical-
ity of our framework were demonstrated using evaluations.
Future research will include the following aspects.
1) From web-based data leakage post-event analysis and

forensic investigation scenarios to the online analysis
scenarios in applications, it is necessary to consider the
time efficiency evaluation of comprehensive analysis
methods. Higher accuracy and faster comprehensive
analysis methods need to be explored for online secu-
rity incident analysis scenarios.

2) Due to the existence of attacks that tamper with the sys-
tem time or errors in the recording of the data capture
stage, which may lead to the appearance of untrue and
incomplete time in the data. It is necessary to consider
the credibility of web-related log data and design mech-
anisms such as weight allocation, error correction or
feedback.
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