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Abstract—Cloud environments enhance diffusion model effi-
ciency but introduce privacy risks, including intellectual property
theft and data breaches. As Al-generated images gain recognition
as copyright-protected works, ensuring their security and intel-
lectual property protection in cloud environments has become
a pressing challenge. This paper addresses privacy protection
in diffusion model inference under cloud environments, identi-
fying two key characteristics—denoising-encryption antagonism
and stepwise generative nature—that create challenges such as
incompatibility with traditional encryption, incomplete input
parameter representation, and inseparability of the generative
process. We propose PPIDM (Privacy-Preserving Inference for
Diffusion Models), a framework that balances efficiency and
privacy by retaining lightweight text encoding and image decod-
ing on the client while offloading computationally intensive
U-Net layers to multiple non-colluding cloud servers. Client-
side aggregation reduces computational overhead and enhances
security. Experiments show PPIDM offloads 67% of Stable
Diffusion computations to the cloud, reduces image leakage by
75%, and maintains high output quality (PSNR = 36.9, FID =
4.56), comparable to standard outputs. PPIDM offers a secure
and efficient solution for cloud-based diffusion model inference.

Index Terms—Privacy-preserving, diffusion model, cloud envi-
ronments, generate artistic images.

I. INTRODUCTION

EXT-TO-IMAGE diffusion models, such as Stable Dif-
fusion [1], have demonstrated significant commercial
value by generating high-quality and creative images from
textual inputs. These models are widely used in applica-
tions such as artistic creation and advertising [2], with over
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150 million downloads reported [3]. Despite their success,
diffusion models are computationally intensive, often requir-
ing high-end GPUs to produce high-resolution images [4].
Meanwhile, there is increasing demand for generating such
images on resource-constrained devices, such as smartphones,
to enhance productivity. For instance, users often seek to create
presentation-ready images on the go, eliminating reliance on
stationary high-performance computing devices [5].

To address these computational limitations, many users turn
to cloud servers (e.g., Google Cloud) for model inference tasks
[6]. Cloud-based diffusion models enable devices with lim-
ited resources to efficiently generate high-quality images [7].
However, this reliance on the cloud introduces new concerns,
as the generated image data—often considered valuable user
assets—may include personal creativity, sensitive information
(e.g., user interests [8], healthcare data [9]), or corporate trade
secrets (e.g., design drafts [10], animated character concepts
[11]). These concerns are further amplified by the growing
recognition of the copyright value of Al-generated images.
In a landmark ruling, the Beijing Internet Court determined
that Al-generated images can be recognized as works and are
protected under copyright law [12].

Despite this legal recognition, significant privacy and secu-
rity risks persist. Cloud servers are vulnerable to external
attacks and misconfigurations, which can lead to data breaches.
For example, the 2024 cyberattack on Snowflake exposed
sensitive data from over 160 companies, affecting hundreds
of millions of personal records [13]. Such incidents highlight
the urgent need for privacy protection mechanisms tailored to
diffusion model-generated images in cloud environments to
safeguard user interests and foster trust in cloud services.

Existing research on privacy protection for diffusion mod-
els has primarily focused on the training phase, employing
techniques such as differential privacy [14] and federated
learning [15]. While effective for protecting training data,
these approaches do not address the unique privacy risks
posed during the inference phase in cloud environments.
Additionally, traditional cloud-based encryption techniques,
such as homomorphic encryption used in non-diffusion tasks
like clustering [16] and retrieval [17], [18], are incompatible
with diffusion models due to their distinct generative charac-
teristics. Specifically, when applied to diffusion models, these
conventional encryption methods face two critical challenges:

e Denoising-Encryption Antagonism: The denoising pro-
cess of diffusion models inherently conflicts with the
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Fig. 1. Confronting image encryption noise addition and denoising diffusion
model noise reduction.

noise-adding process of image encryption. As illustrated
in Fig. 1, image encryption techniques transform a clear
image into a noise-like representation without informa-
tion leakage by increasing its entropy through added
noise. Conversely, diffusion models generate clear con-
tent images from Gaussian noise by reducing entropy
through denoising. This antagonistic relationship can
result in decryption distortion during denoising, while
the denoised encrypted images may inadvertently reveal
plaintext information. Consequently, traditional encryp-
tion techniques are unsuitable for diffusion model
inference.

e Stepwise Generative Nature: Diffusion models operate
through a Markov chain-based generative process, where
each iteration strongly depends on the previous step’s
output as the input for the next. If complete initial input
parameters and features are provided, cloud servers could
iteratively reconstruct the final private image. Thus, it
is imperative to avoid sharing full initial features
and parameters with the cloud. Furthermore, due to
the structural constraints of the Markov chain, altering
the generation order would significantly degrade the
quality of the generated images.

To address the aforementioned challenges, we propose
PPIDM (Privacy-Preserving Inference for Diffusion Mod-
els), a novel framework for diffusion model inference in
cloud environments that mitigates both resource constraints
and privacy risks. Specifically, our approach leverages mul-
tiple non-colluding cloud servers to collaboratively process
image generation. The client device is only responsible for
lightweight tasks, such as data transmission and text encoding,
while the computationally intensive denoising operations are
offloaded to the cloud, thereby alleviating the client’s com-
putational burden. Each cloud server independently handles
the denoising of local features, reducing the risk of feature
leakage.

The main contributions of this work are summarized as
follows:

e This work pioneers the definition of privacy protection
in diffusion model inference within cloud environments,
identifying key challenges: incompatibility with con-
ventional encryption, incomplete representation of input
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parameters, and inseparability of the model’s sequential
structure. These challenges make conventional privacy
methods unsuitable.

e We propose PPIDM, a privacy-preserving inference
framework that avoids encryption and sequence modifi-
cation. By distributing computationally intensive layers,
including initial features, across multiple non-colluding
cloud servers, PPIDM ensures each server only processes
partial data, preventing full image reconstruction while
meeting mobile users’ resource and privacy needs.

e Experiments on regular and artistic datasets show that
with four cloud devices, PPIDM offloads 67% of SD
model computation to the cloud, maintains high output
fidelity (PSNR = 36.9, FID = 4.56), and reduces image
information leakage by 75%.

Roadmap The organization of this paper is as follows.
Section II discusses the development of diffusion models and
the field of image privacy protection in cloud environments,
and basic knowledge of related technologies. Section III
provides a detailed definition of the problem. Section IV
describes the proposed PPIDM in detail. Section V conducts
an experimental evaluation of PPIDM. Section VI analyzes the
theoretical safety of PPIDM. Section VII discusses the future
development of diffusion model inference for image genera-
tion. Finally, Section VIII summarizes the work presented in
the paper.

II. BACKGROUND
A. Related Work

We review related works on privacy protection for diffusion
model inference in cloud environments, focusing on two areas:
privacy protection for diffusion models and privacy protection
for images in cloud environments.

1) Privacy Protection for Diffusion Models: Existing
research on privacy protection for diffusion models focuses
primarily on protecting training data sets, which can be
categorized into two aspects: protecting training sets’ source
data and protecting sensitive concepts within training data.

a) Protecting the Source Data of Training Sets: In
specific domains such as medical imaging, data privacy and
decentralized data distribution make centralized training chal-
lenging. Medical institutions often cannot share data, and
uploading data to the cloud for training poses significant
privacy risks [22]. To address these issues, researchers have
explored techniques such as federated learning [23], which
enables distributed training of diffusion models while pre-
serving data privacy. Federated learning avoids collecting raw
data by aggregating model parameters, ensuring the security
of private training data.

Tun et al. [24] was the first to investigate the application of
federated learning to diffusion model training, demonstrating
its potential for preserving training data privacy. FedDISC [15]
integrates pre-trained diffusion models into a semi-federated
learning framework, improving performance, generation qual-
ity, and stability under single communication rounds without
client-side training. FedDiff [20] proposed a dual-branch mul-
timodal learning network and federated framework based on
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diffusion models to tackle the privacy challenges of hetero-
geneous multi-source data. Goede et al. [25] utilized the
FedAvg algorithm in federated learning to train denoising
diffusion models, achieving generation quality comparable to
centralized training. Vora et al. [26] introduced the FedDM
framework, which enhances communication efficiency through
quantization and addresses data heterogeneity issues, enabling
efficient privacy-preserving image generation in distributed
environments.

While these studies focus on the privacy of training data in
diffusion models, their methods are not suitable for addressing
privacy issues in cloud-based inference and image generation,
given the distinct requirements and processes of the inference
phase.

b) Protecting Sensitive Concepts in Training Data:
Diffusion models may memorize specific training samples
(e.g., faces or trademarks) [27]. To mitigate the leakage of
sensitive concepts, researchers have developed methods based
on differential privacy (DP), focusing on optimizers, datasets,
and training approaches to protect sensitive information.

DPDM [28] was the first to use DP-SGD (Differentially
Private Stochastic Gradient Descent) for training diffu-
sion models, identifying the pressing need for advancing
privacy-preserving generative modeling with diffusion mod-
els. Ghalebikesabi et al. [29] proposed pretraining on public
datasets followed by fine-tuning with DP-SGD on private
datasets, achieving better results than previous methods. DP-
LDMs [30] explored fine-tuning attention modules in latent
diffusion models (LDMs) using DP-SGD, effectively balanc-
ing efficiency and privacy. PRIVIMAGE [14] selected more
compact subsets of public data for pretraining through seman-
tic queries, saving computational resources while maintaining
image quality. DP-Promise [21] introduced a two-phase diffu-
sion model training approach to reduce overall noise injection,
achieving a superior balance between privacy and utility.

These studies primarily address the issue of sensitive con-
cept leakage in training data but do not solve the privacy
challenges of cloud-based diffusion model inference and image
generation.

2) Privacy Protection for Images in Cloud Environments:
In cloud environments, research on image privacy protection
primarily focuses on discriminative tasks such as clustering
[31] and retrieval [32]. Most of these approaches rely on
homomorphic encryption or traditional encryption techniques
to ensure image privacy.

a) Privacy Protection for Image Clustering Tasks:
For image clustering, Bunn and Ostrovsky [33] proposed
a privacy-preserving two-party k-Means clustering protocol
based on Paillier homomorphic encryption, though its security
significantly decreases with more than two participants. Liu
et al. [34] achieved privacy-preserving clustering using fully
homomorphic encryption (FHE), introducing a method to
compare encrypted data distances with trapdoor information.
Wu et al. [35] designed an outsourced k-Means clustering
scheme combining fully homomorphic encryption and cipher-
text packing techniques, enabling parallel computation without
additional cost. Zhang et al. [16] further developed a multi-key
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FHE scheme to handle ciphertext conversion under different
keys, enhancing data privacy protection.

b) Privacy Protection for Image Retrieval Tasks: For
image retrieval, Bellafqira et al. [36] proposed a content-
based image retrieval method using homomorphic encryption
to protect image privacy, extracting wavelet-based features for
similarity measurement. Li et al. [19] employed convolutional
neural networks (CNNG5) to extract plaintext image descriptors,
followed by secure encryption and clustering-based indexing
trees for retrieval. Wang et al. [18] designed a block-based
image encryption scheme paired with a Transformer-based
feature extractor to securely retrieve features from encrypted
images. Yu et al. [17] proposed an encryption method compat-
ible with JPEG compression, extracting local Markov features
from encrypted images and constructing feature vectors via a
bag-of-words model for image retrieval.

These studies show that privacy-preserving methods for
clustering and retrieval tasks primarily depend on encryption
techniques. Furthermore, these discriminative tasks do not
modify the original encrypted image during the inference
process. However, diffusion models involve complex denois-
ing and reconstruction processes, making encryption-based
approaches unsuitable for privacy protection in generative
tasks.

Thus, new privacy-preserving methods must be developed
to address the privacy risks inherent in diffusion model infer-
ence. Tab. I provides a comprehensive comparison of existing
methods. Unlike prior approaches, our work is the first to
integrate computational efficiency, generation quality, and pri-
vacy requirements in cloud-based diffusion model inference,
meeting the demand for secure, high-quality image generation
for mobile users.

B. Preliminaries

This section introduces relevant basic knowledge, including
the relevant theoretical knowledge of text-to-image diffusion
models and U-Net.

1) Text-to-Image Diffusion Models: The function of text-
to-image diffusion models is to generate images matching the
description from the input text prompt. The model consists
of three key components: the CLIP (Contrastive Language-
Image Pre-training) text encoder, U-Net, and the VAE decoder
(Variational Auto-Decoder). Specifically, CLIP encodes the
text prompt into a feature vector aligned with the semantics
of the image; U-Net predicts the residual noise and converts
Gaussian noise into latent space features of the image; the
VAE decoder maps these latent features to the pixel space of
the image.

The inference generation process is as follows: Given an
input text prompt p, the CLIP text encoder E¢yp first extracts
the text’s embedded features F},. Then, Gaussian noise matri-
ces X; ~ N(0, 1) are randomly initialized. Subsequently, at
each time step, the noise matrix X;, text embedded features
F),, and the time step ¢ (where 0 < ¢ < T') are simultaneously
fed into the U-Net model U. The U-Net uses these three inputs
to calculate the noise matrix X,_; for the next time step:

Xi—1 =U(Xy, Fp, 1) )
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TABLE I
THE COMPARISON BETWEEN PPIDM AND EXISTING RESEARCH

Scheme Scenario Task Protection Target Key Technology F1 F2
Zhang et al. [16]  Single cloud  Image clustering Inference content Homomorphic encryption v v
Li et al. [19] Single cloud Image retrieval Inference content Conventional encryption v X
Yu et al. [17] Single cloud Image retrieval Inference content Searchable encryption v v
Li et al. [20] Multi-cloud  Diffusion model Training source data Federated learning X X
Yang et al. [15] Multi-cloud Diffusion model Training source data Semi-supervised federated learning X X
Wang et al. [21] User end Diffusion model  Training specific concepts Differential privacy X X
PPIDM (Our) Multi-cloud  Diffusion model Inference content Feature decomposition v v
Note: F1: Inference Content Protection, F2: Support Mobile User End
TABLEII Cloud 1 Cloud 2 Cloud n

PARAMETER DISTRIBUTION OF SD AND SDXL. MODELS

Model SD1.4/1.5 SDXL
Text Encoder 123M 817M
VAE Decoder 50M 50M
U-Net Total Parameters 860M 2.6B
U-Net Convolution Parameters 589M 334M
U-Net Attention Mechanism Parameters 94M 956M

Through ¢ iterative denoising, the latent features X of the final
denoised image are obtained. Finally, the VAE decoder Dvyag
maps the denoised latent features X to the final pixel-level
image I.

2) U-Net: The U-Net network is a core component of
the text-to-image diffusion model, which iteratively denoises
Gaussian noise by integrating text features and time-step
guidance, ultimately generating a latent representation of
image features. In Stable Diffusion, the U-Net architecture
enhances the traditional U-Net by incorporating ResNetBlock
(with temporal embedding), Spatial Transformer (including
attention layers, cross-attention, and self-attention modules),
and CrossAttnDownBlock, CrossAttnUpBlock, and CrossAt-
tnMidBlock modules. All modules consist of convolution
(Conv), attention, normalization (GroupNorm), linear layers,
SiLU activation, and Dropout, forming the basic architecture.

Table II compares the parameter distribution of SD and
SDXL models, providing insight into their computational
bottlenecks and opportunities for optimization in text-to-image
diffusion models.

As shown in Table II, the U-Net accounts for 75-84% of
the total model parameters in SD and SDXL. Among these,
convolution (Conv) and attention layers make up 50-80%
of the U-Net parameters. The main limiting factor for user
devices is storage, as they must accommodate the parameters
and memory requirements within a given hardware budget.
At the same time, for diffusion model inference, addressing
privacy concerns primarily involves protecting both input text
and output images.

The convolution layers act as the backbone of U-Net,
directly linking input and output image latent features, while
attention layers directly associate with the embedded text
features. Therefore, optimizing the convolution and attention
mechanisms is key to resolving user resource constraints while
addressing image and text privacy challenges.

H=

Feature Block 1\ Feature | Block 2 Feature Block n

A still life of a

> 1
vase with 'm
sunflowers... -
Input: Output:
Prompts User Generated image

Fig. 2. System model.

III. PROBLEM FORMULATION

The problem of privacy-preserving inference for diffusion
models in the cloud aims to address privacy and security
challenges faced by resource-constrained users relying on
cloud services for diffusion model inference. Specifically,
users input text prompts and leverage the computational power
of the cloud to perform inference tasks using text-to-image
diffusion models, generating images corresponding to the input
text. During this process, users aim to minimize the leakage
of input text and output image content to protect personal
creativity and privacy. Below, we introduce the system model,
threat model, and design objectives of this work.

A. System Model

The system model of this work comprises two primary
entities: users and cloud service providers. Users collaborate
with multiple non-colluding clouds to complete the inference
tasks of text-to-image diffusion models. The system model is
illustrated in Fig. 2.

The definitions of the entities are as follows:

User: The owner of the personalized trained text-to-image
diffusion model and the image generated. User devices are
typically mobile devices with limited computational resources
but high communication bandwidth (e.g., smartphones, and
tablets). Users input text prompts and expect to receive
corresponding images. They primarily handle lightweight
computational tasks, including text feature extraction,
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distribution and collection of denoising process features, and
image decoding.

Cloud Service (CS): Cloud service providers are the pri-
mary computational entities for text-to-image diffusion model
inference, equipped with ample computational resources and
high communication bandwidth. This work employs multiple
non-colluding cloud providers CS = {CS;,CS,,...,CS,} to
build the cloud service system, avoiding complete data control
by a single cloud provider and reducing the risk of image
privacy leakage. The cloud receives features and parameters
from the user, performs the high-load computations of the
denoising process, and returns the results to the user.

B. Threat Model

Based on the above system model, we define the potential
threats faced by the system. The user, as the intellectual
property owner of the images generated by the diffusion model
inference, is considered fully trusted and secure.

The cloud service provider participates in the computations
for image generation and, similar to existing image privacy
protection schemes in cloud environments [17], [19], [23], is
considered an “honest-but-curious” semi-trusted party. While
adhering to the protocol, the CS may attempt to infer the
content of the generated images illegally. Cloud providers,
being organizations with significant reputational and legal con-
siderations, have little incentive to tamper with communication
data. Furthermore, to protect their commercial interests, cloud
providers have a strong motivation to prevent external attackers
from stealing cloud data.

While cloud providers are not allowed to view or use the
content of generated images, they may be attacked, leading
to data leakage. Considering the diverse security configura-
tions of different cloud providers, we assume attackers can
compromise a single cloud provider but cannot simultaneously
compromise multiple providers. Additionally, due to conflict-
ing interests and independent operations, cloud providers are
assumed not to collude.

Malicious attackers, such as hackers, may extract feature
data and computational layer parameters from a single cloud
server to perform inference analysis on the data. The privacy
protection in this work aims to safeguard the content of the
generated images, which is closely related to the user input and
highly personalized. Since attackers cannot reconstruct unique
inference content by analyzing model parameters, we do not
consider the security of model parameters.

C. Design Objectives

This work focuses on the following three design objectives:

Lightweight User-Side Computation: Since user devices
in cloud environments typically have limited computational
resources, users expect to use devices such as smartphones,
tablets, or lightweight laptops for image generation. Thus, the
primary design objective is to offload complex computational
tasks to the cloud, minimizing the computational burden on
the user side.

High-Quality Generated Images: While reducing user-side
computational costs through cloud services, users also expect
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the quality of cloud-generated images to be comparable to
locally generated ones. Hence, the second design objective
is to ensure that the quality of generated images does not
significantly degrade when offloading computations to the
cloud.

Privacy-Preserving Generated Images: Users do not want
the content of generated images, which belong to personal
intellectual property and privacy, to be leaked. Through
observations, we find that traditional encryption methods are
unsuitable for diffusion models. Therefore, this work aims to
minimize the proportion of leaked information in generated
images to protect user privacy from an information leakage
perspective.

IV. PRIVACY-PRESERVING INFERENCE FOR DIFFUSION
MODEL SCHEME

A. Scheme Framework

To achieve the three design objectives of lightweight user-
side computation, high-quality generated images, and privacy-
preserving generated images, we propose a privacy-preserving
inference for the diffusion model scheme (PPIDM). Its design
consists of three core components:

1) Text Privacy Protection: Lightweight CLIP text encod-
ing is performed on the user side to ensure text privacy,
safeguarding the user’s text data from being exposed to
the cloud.

2) Cloud Computation Offloading: To reduce the com-
putational burden on the user side, the high-load
computational layers of the U-Net model are offloaded
to the cloud for execution. This significantly reduces
the resource consumption on the user side, especially
for generating high-resolution images.

3) Privacy-Preserving Feature Partitioning: During the
denoising process of U-Net, features closely related to
the text and image are divided and distributed to multiple
non-colluding cloud servers for processing. Each cloud
server processes only part of the feature data, reducing
the likelihood of any single cloud server acquiring a
complete view of the data and thereby lowering the risk
of data privacy leakage.

Tab. III presents the main notations and descriptions in this
paper.

We define the core functional modules of PPIDM as follows:

e Ecuip(P) — Fp: Text encoder, input as text p, output as
text embedding features Fj,.

o U = {Ucenter, Uocar } (Fp, Xt) — X;—1: The proposed
PPIU-Net, consisting of Ucener On the user side and
Ulocar 0n the cloud. Input as text embedding features F),
timestamp f, and the current image features X,. Output
as denoised image features X;_;.

e Dyap(X:) — I: Image decoder, input as latent space
image features X;, output as generated image 1.

The inference process of PPIDM involves interactions
between the user and cloud servers, as illustrated in Fig. 3.
The workflow is described as follows:

Step 1: The user inputs p on a mobile or similar lightweight
device. The Ecrip extracts the Fj,. Simultaneously, the user
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TABLE III
NOTATIONS AND DESCRIPTION

Notation Description
D Input text
Ecrip CLIP text encoder

Fy
te{0<t<T}
Xt

User

Embedded features of the text

Time step

Latent space features of the image after ¢ step iterative denoising
User - end

n cloud service providers

CS ={CS1,C8,,...,CS8n}
U U-Net network
U = {Mcente'm Ulocal}

{X7,j€(0.1,....0}

PPIU-Net network consists of the user-center and the cloud-local part.
Feature data of the j layer of the U-Net in the ¢ step denoising iteration.

{th"” ,1€(0,1,...,n),7 € (0,1,...,1)} Feature data of the j layer in the 7 cloud’s U-Net during the t-step denoising iteration.
C Convolution layer calculation

{017027 cee :Cn}
{Cpadlv CpadZ:’- (R Cpadn}

n
{SU ScreySe

Sub-block data after partitioning the input data th for convolution.
Padded sub-block data for edge preservation during convolution.
Output of convolution computations returned from local servers to the central server.

Sc

A

Q, K,V
{Ql’Q27 . '7Qﬂ/}

Reconstructed complete output data after aggregation, representing Xfrl‘
Attention mechanism calculation

Query, Key, and Value matrices for attention mechanism.

Sub-blocks of query matrix @ split according to the number of cloud servers.
Output of attention computation for sub-block i, represented as A(Q?, K%, V).
Aggregated output of the attention mechanism, representing Xg+1.

Group normalization layer calculation

Sub-blocks of the input data X7 after partitioning for group normalization.
Mean of each sub-block for group normalization.

Variance of each sub-block for group normalization.

Normalized sub-blocks after group normalization, returned to the central server.

Sa Reconstructed final output after global aggregation of the normalized sub-blocks, representing Xngl.
P Sub-block feature aggregation

Dy ag VAE image decoder

I Pixel-level generated image

generates X; ~ N(0,I), and sends the F), along with
X: ~ N(0,I) and other parameters to PPIU-Net, which
consists of the user-side Ugeper and the cloud-side Ujgey.
These modules are composed of convolution layers layer, .,
attention layers layer,,, Group normalization layergy, and
other layers layer,.,-

Step 2: For each timestep, U, iteratively executes computa-
tions according to the network structure. First, Ucenter processes
the input feature X7, where j € {0,1,..., L}, based on the
current layer type. If the layer type is layer .., the feature
is normally processed. For layer, ., layer,,, and layergy, the
corresponding features X are assigned for local computation.

Step 3: Each cloud server in {CSi,CSy,...,CS,}
independently computes the assigned local feature Xt(” ),
obtaining updated local features Xt(m +1), which are then
returned to Uenger- .

Step 4: Ujoea aggregates all results Xt(w 1 from the cloud
servers to update the global feature for the current layer and
produces the complete output X7 +

Step 5: Steps 2—4 are repeated until all layers of PPIU-
Net have completed computation for the current timestep t,
yielding the synchronized output X; ; = X}.

Step 6: Steps 2-5 are repeated for all timesteps to complete
the iterative denoising process, ultimately generating the final
latent spatial feature X.

Step 7: The user decodes the latent spatial feature X
through the image decoder Dvyag, generating the final high-

quality image 1.

PPIDM does not encrypt feature data, does not input com-
plete initial parameters and features, and does not adjust the
model’s generation order, ensuring the quality of generated
images. The core idea of PPIDM lies in the design of
PPIU-Net, which adopts a network architecture combining
a user-side aggregation center and multiple cloud-side com-
puting centers. The complex computation layers and latent
privacy risks in the U-Net network (such as convolution
layers, attention layers, etc.) are distributed across different
cloud servers. Each cloud server processes only part of the
data, communicates results back to the user, and aggregates
and updates the output. Even if a single cloud server is
compromised, attackers would find it challenging to infer
complete latent spatial features and obtain the full image-level
information. This effectively protects user privacy. The overall
PPIDM workflow is presented in Algorithm 1.

B. Lightweight User-Side Text Encoding

The model complexity and computational cost of the text
encoder Ecppp are significantly smaller than those of the U-
Net network, making its computational requirements generally
manageable on conventional devices. Moreover, this com-
ponent can be directly executed locally to align with the
decentralized computation design of diffusion models. For
instance, the model size of the text encoder in SDI1.5 is
approximately 123MB. Encryption of the input text prompt
is likely to exert a negative influence on the generated quality.
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Algorithm 1 PPIDM Algorithm

Input: Prompt p, Step t.
Output: Generated image /.
User: Generates Gaussian noise matrix X; ~ A (0, I).
User: Enters p into Ecpip to get F),.
for t =T to 0 do
for j =0to ! do
if layer = Conv, Att, Gn then

User: Segments {Xt(j),j €(0,1,...,0)} to {Xt(i’j),i € (0,1,...

{CS; i€ (0,1,...,n)}

,n),7 € (0,1,...,0)} in Ugenter, distributed to

CS: Performs Ulocal(Xt(i’j)7 F,,t) — Xt(i’jﬂ), returned to the User.

User: Aggregates all Xt(i’ng)
else _ '
User: Performs Ucener( X7, Fp, t) — X{H.
end if
end for
end for
User: Inputs X to decoder Dyag to generate image I.

to get global results Xf L
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Fig. 3. Overview diagram of the PPIDM. For ease of understanding, we take
four non-colluding clouds as an example. Details of the key components,
including the Text Encoder, PPIU-Net, and Image Decoder, can be found in
Sections IV-B, IV-C, and IV-D.

Consequently, within the PPIDM scheme, both the text and its
corresponding encoder are processed by the user.

At this stage, users input a text prompt p into the text
encoder Fcpp to obtain a high-dimensional text embedding
feature F},. Only Fj, is uploaded to the cloud server CS,
thus ensuring privacy protection and optimizing the quality
of downstream images.

C. High-Burden Multi-Cloud Collaboration:
Privacy-Preserving Inference U-Net

In SD models, U-Net requires handling most parameters.
Convolutional layers, attention layers, and normalization lay-
ers of U-Net consume significant computational resources and
directly correlate with image quality features. Therefore, we
design PPIU-Net, which includes PPIU-Net-Center Uceper and
multiple cloud-based PPIU-Net-Local Uy modules. Ucepger
extracts and decomposes high-dimensional features into sub-
features, distributing them to various cloud servers. Each
cloud-local Uj,e, processes a portion of the feature informa-

tion, and returns the results t0 Ucener, Which aggregates and
updates the final complete feature representation. The structure
of PPIU-Net is illustrated in Figure 4.

Procedure: For Gaussian noise and latent spatial feature
X4, Ucenter processes each layer based on the computational
layer type. When the layer is computationally complex (e.g.,
convolutional layer layercony, attention layer layery,, or nor-
malization layer layerg,), Ucenier Segments input features Xt]
into smaller subfeatures and distributes them across mul-
tiple servers {CS;} for parallel computation: {Xt(m )i e
(0,1,...,n),5 € (0,1,...,1)}, where Xt(”) is processed
locally at each C'S;, using specific mechanisms for convolution
C, attention A, and group normalization G. The output feature
is represented as:

C(X{"), layer = Conv,
X = QA tayer = At @
G(x), tayer = ON,

After receiving the computation results X t(” ) from all cloud
servers, Ucener performs a global aggregation operation @ to
obtain the computed results for the layer:

X = oY X X))

where the outputs of all network layers are computed to X}.
The latent space feature X is obtained after Ugepeer and Ujgear
cooperate to complete 7 de-noising iterations.

Specifically, the processes for privacy-preserving convolu-
tion, attention mechanism, and group normalization are as
follows:

1) Privacy-Preserving Convolution (PPIConv): The com-
putation process of PPIConv is divided into three steps.

Step 1: User-side data partitioning and padding. Uccyer
partitions the input data X] based on the number of cloud
servers and creates sub-block data {Cy,Cs,...,Cy}. For
edge preservation during the convolution, padding opera-
tions are applied. The padded output data are denoted as
{Opadl ) Cpad27 ceey C’padn}-
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Fig. 4. Collaborative inference process of PPIU-Net with four cloud servers.

Step 2: Server-side block convolution computation.
Ucenter distributes the padded sub-block data
{Cpadi; Cpad2, - - -, Cpaan} to multiple cloud servers Ulgcal,
which perform convolution computations. The outputs
{sl,s2,...,s"} are then returned to Ueeper-

Step 3: Global aggregation and updating. U, aggre-
gates all returned convolution results {s!,s? ... s"} to
reconstruct the complete output data S, which is th +

2) Privacy-Preserving Attention Mechanism (PPIAtt): PPI-
Att focuses on matrix computations involving query, key, and
value matrices (QKV).

Step 1: User-side matrix splitting. U ., generates query
matrix O, key matrix K, and value matrix V based on
the input data X]. Then, Ucener splits Q into sub-blocks
{QY,Q?,...,Q"} according to the number of cloud servers.

Step 2: Server-side attention computation. U,
distributes the corresponding  sub-blocks of key-
value pairs (K,V) to the cloud servers C.S;, which
execute the attention computation and return the results
S ={AQ", K\, VY),i=1,2,...,n}.

Step 3: Global aggregation. The aggregated output 5’2 of

the attention mechanism is represented as .S 4, which is th +1

3) Privacy-Preserving Group Normalization (Ppign): The
core of PPIGN lies in the local computations of group statistics
by the cloud servers.

Step 1: User-side data partitioning. Uy, splits the input
data X; into sub-blocks {G*,G?,...,G"} and distributes
them to the servers CS;.

Step 2: Server-side group normalization. Each
Ujoca computes the mean {ug, pio,...,un}t and variance
{0%,03,...,02} of its sub-block, then normalizes the data
and returns the outputs {G‘l, GQ, cee é”} to Ucenter-

Step 3: Global aggregation. U, aggregates all returned
normalized sub-blocks to compute the global mean and vari-
ance and reconstruct the final outputS¢, which is Xg T

D. Image Decoder

The decoder Dyag of the VAE can similarly function as
a component independent of the U-Net. Compared to the
text encoder and U-Net network, it has fewer parameters
(approximately 50M) and lower computational requirements.
In this proposed solution, we choose to deploy the VAE on
the client side to enhance the protection of latent features and
image privacy. The client inputs the latent features X into
the VAE decoder Dvyag for decoding, where Dyag(X:) > I,
generating pixel-level images 1.

V. EXPERIMENTS AND ANALYSIS
A. Experimental Setup

1) Experimental Platform: We conducted experiments on
a machine equipped with an Intel(R) Core(TM) i7-14700KF
processor, 64GB of memory, and an NVIDIA GeForce RTX
4090 GPU running the Windows operating system. The exper-
iments were implemented in the PyTorch environment to
validate the proposed PPIDM method.

2) Datasets: Considering the differences in diffusion mod-
els across artistic and general-purpose domains, experiments
were conducted on two types of datasets: artistic images and
general images. The detailed parameters of the datasets are as
follows:

e Art [37]: Includes two categories of works, with a total of
1,100 prompts. The first category includes works by five
renowned artists: Pablo Picasso, Van Gogh, Rembrandt,
Andy Warhol, and Caravaggio, with 100 prompts in total.
The second category includes works generated using
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six publicly authorized SD models and similar styles,
with artists including Kelly McKernan, Thomas Kinkade,
Tyler Edlin, Kilian Eng, and the “Demi-Human” series.
This category contains 1,000 prompts, with content pri-
marily in painting styles.

e Coco30k [38]: Includes a variety of daily scenes and
objects such as people, animals, and vehicles, with a
total of 30,000 prompts. The content generated primarily
resembles realistic styles.

3) Baseline: Since this paper focuses on evaluating privacy
protection during the inference phase of diffusion models, the
baselines are set as the regular-resolution Stable Diffusion
(SD) model and the high-resolution Stable Diffusion XL
(SDXL) [39] model.

4) Evaluation Metrics: The evaluation metrics used in this
paper align with those of SDXL to assess the quality of
the generated images. Comparisons are made against images
generated by SD or SDXL under the same parameter settings.
Specific evaluation metrics include:

¢ PSNR (Peak Signal-to-Noise Ratio): Measures the sim-
ilarity between the generated image and the reference
image. Higher values indicate better image quality.

e SSIM (Structural Similarity): Evaluates the structural
similarity of images based on pixel values. Higher values
indicate better structural similarity.

o LPIPS (Learned Perception of Image Patch Similar-
ity): Uses deep learning models to assess the structural
and perceptual similarity between the generated image
and the reference image. Lower values indicate smaller
perceptual errors.

e FID (Fréchet Inception Distance): Measures the dis-
tance between the distributions of generated images and
real images. Lower values indicate better quality of the
generated images.

B. Experimental Details

This solution primarily focuses on privacy protection during
the inference phase and does not involve fine-tuning or training
the model. The standard parameters during inference are as
follows: SD Model Resolution: 512. SDXL Model Resolution:
1024. Number of Inference Steps: 50. Guidance Scale: 5. 0.
Scheduler Method: DDIM [40]. Number of PPIDM Cloud
Devices: 4. Any changes to the experimental setup will be
detailed in the relevant sections.

C. Image Generation Quality Evaluation

In this section, we evaluate the quality of images generated
by PPIDM, including Similarity evaluation between the images
generated by PPIDM and the original model. Ablation exper-
iments on parameters related to the quality of the generated
images.

As shown in Table IV, we evaluated the proposed scheme
PPIDM from the perspectives of datasets, the number of
cloud devices, and models to assess the similarity between the
generated images and those of the original model. Overall,
PPIDM achieves high consistency with the original model
across all metrics: the PSNR of the generated images exceeds
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Fig. 5. Comparison of the images generated by SD and PPIDM on the Art
and COCO datasets.

TABLE IV
IMAGE QUALITY EVALUATION OF PPIDM - GENERATED IMAGES

Dataset  Resolution ~ Method PSNR T SSIMR/[TetrlCIiPIPS T FID ]
SD - - - -

512 Ours-2 36.80 0.968 0.018 4.73

Ours-4 36.90 0.969 0.017 4.56

Art Ours-8 36.76 0.968 0.018 4.74
SDXL - - - -

1024 Ours-2 39.48 0.974 0.014 2.64

Ours-4 39.57 0.975 0.013 2.42

Ours-8 39.77 0.975 0.013 2.53
SD - - - -

512 Ours-2 37.27 0.979 0.014 0.159

Ours-4 37.31 0.979 0.014 0.159

Coco Ours-8 37.12 0.978 0.014 0.164
SDXL - - - -

1024 Ours-2 38.90 0.977 0.014 0.102

Ours-4 39.15 0.978 0.014 0.097

Ours-8 39.18 0.978 0.014 0.097

36.7, LPIPS is less than 0.017, FID is less than 4.8, and
SSIM is greater than 0.96. These results indicate that PPIDM
effectively preserves the image generation quality of the orig-
inal model. Examples of the generated images are shown in
Figure 5, where differences are nearly imperceptible to the
naked eye.

Analyzing from the dataset perspective, PPIDM performs
better on the standard dataset COCO compared to the artistic
dataset Art across all metrics. This demonstrates that PPIDM
achieves higher image generation quality for conventional
content and realistic style images than for artistic oil painting
images. This also suggests that PPIDM is more suitable for
generation tasks in real-world scenarios. Notably, the FID
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TABLE V

IMPACT OF PPIU-NET’S COMPUTATIONAL LAYERS ON
GENERATED IMAGE QUALITY

Model PSNR{1 SSIM1 LPIPS| FID|
SD

SD + Ppiconv 47.09 0.993 0.003 1.09
SD + Ppiatt 47.19 0.993 0.003 1.10
SD + Ppign 36.91 0.968 0.017 4.62
SD + Ppiconv + Ppiatt 47.31 0.994 0.003 0.88
SD + Ppiconv + Ppign 36.87 0.968 0.018 4.69
SD + Ppiatt + Ppign 36.87 0.968 0.018 4.62
PPIDM 36.90 0.969 0.017 4.56

metric shows a significant difference between the COCO and
Art datasets, with COCO achieving a much better FID. This
is likely because the COCO dataset has higher inter-class
distinguishability, resulting in smaller distribution differences
in the generated images.

In terms of the number of cloud devices, the overall results
indicate that the number of devices has minimal impact on
the quality of the generated images, with only slight changes
in similarity. For 512 x 512 resolution images generated by
the SD model, image quality improves as the number of
devices increases from 2 to 4, achieving the best results with
four devices, before declining when the number of devices
increases to 8. This trend can be attributed to the fact that
as the number of devices increases from 2 to 4, feature sub-
blocks become smaller, increasing computational granularity
and optimizing image quality. However, when the number of
devices increases further to 8, the feature sub-blocks become
too small, leading to insufficient information and a decline
in quality. In contrast, for 1024 x 1024 resolution images
generated by the SDXL model, the best quality is achieved
with eight devices, and a decline point has not yet been
observed.

From the model perspective, the standard resolution of
the SD model is 512, while the standard resolution of the
SDXL model is 1024. The results show that the SDXL model
performs better at 1024 resolution than the SD model does
at 512 resolution. This is attributable to both the superior
network structure and parameters of the SDXL model, as well
as the smaller proportion of segmentation boundaries at higher
resolutions, which further improves overall similarity.

D. Ablation Study

First, we conducted ablation experiments on the complex
computational layers in PPI-Unet to evaluate the impact of
different computational layers on the performance of the
proposed scheme. The experimental results are shown in Table
V, with parameters set as follows: the dataset is Art, the model
is SD, the resolution is 512, the number of iterations is 50,
and the number of cloud devices is 4.

As shown in Table V, when the PPIConv and PPIAtt layers
are modified independently in the SD model, the metrics
of the generated images are superior to those of PPIDM.
This indicates that the convolutional and attention layers have
a relatively small impact on generation quality. However,
after modifying the PPI GN layer, the quality metrics of
the generated images deteriorated, indicating that the feature
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Impact of PPIU-Net’s computational layers on generated image

TABLE VI

THE IMPACT OF TIME-STEP PARAMETERS ON
GENERATED IMAGE QUALITY

Time-step PSNR 1 SSIM {1 LPIPS| FID |
30 37.06 0.97 0.017 4.67
40 37.04 0.969 0.017 4.46
50 36.90 0.969 0.017 4.56
60 36.45 0.967 0.019 4.74
70 36.48 0.966 0.019 4.82

depiction of a starry

Fig. 7. Impact of time steps on generated image quality.

partitioning and computation in the PPI GN layer introduced
significant losses. This degradation occurs because, unlike the
conventional GN in SD, PPIDM reduces computational costs
on the user side by decomposing global GN into multiple local
GN computations, which are later aggregated. Consequently,
this process inevitably results in some precision loss. It’s a
trade-off between precision and computational cost. Overall,
PPIDM, which integrates all three computational layers, shows
no major shortcomings in similarity metrics, indicating a bal-
anced similarity between the generated images and the original
images across various aspects. No significant differences are
discernible to the naked eye. Examples of the generated images
are shown in Figure 6.

Next, we evaluated the similarity between the images gener-
ated by PPIDM and SD under different numbers of inference
steps. The experimental results are shown in Table VI.

From Table VI, it can be observed that as the number
of inference steps increases, the PSNR, LPIPS, FID, and
SSIM metrics between PPI and SD-generated images degrade.
This is because the cumulative effect of feature differences
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TABLE VII
THE IMPACT OF RESOLUTION ON THE QUALITY OF GENERATED IMAGES

Resolution PSNR 1T SSIM T LPIPS| FID |
256 31.42 0.925 0.045 12.66
512 36.90 0.969 0.017 4.56
768 38.06 0.970 0.019 449
1024 39.08 0.972 0.020 4.54

256*256

512*512 768768 1024*1024

m

SD

P—— T

PPIDM

“ )

Art Prompt: A self-portrait in the style of Van Gogh's famous paintings

Fig. 8. Impact of resolution on generated image quality.

becomes more pronounced with more iterations, leading to
a gradual decrease in the similarity between the generated
images and those of the original model. Image instances
generated by different Time steps are shown in Figure 7. As
the number of Time steps increases, the difference between the
images generated by PPIDM and SD remains minimal, with
no perceptible distinction observable in Figure 7.

Finally, we evaluated the quality of images generated by
PPIDM under different resolutions. The results are shown in
Table VII.

From Table VII, it can be seen that as the resolution
increases, the PSNR and SSIM metrics between PPISD and
SD-generated images gradually improve. This is because, at
higher resolutions, the proportion of feature data slicing to
the overall features becomes smaller, reducing the impact
of slicing on the pixel quality of the images. On the other
hand, the LPIPS and FID metrics do not exhibit a monotonic
trend with resolution changes. This is due to the SD model’s
standard resolution being 512, and images generated at reso-
lutions of 256 or 1024 may have missing or repetitive content,
introducing some disturbance to the deep perception metrics.
Example effects of generated images with different resolutions
are shown in Figure 8.

As shown in Figure 8, only the original training resolution
of 512 effectively generates images that align well with
the prompt semantics, while resolutions of 256, 768, and
1024 exhibit suboptimal performance. The similarity between
images generated by PPIDM and SD remains high.

E. Image Generation Time Overhead

In this section, we discuss the time overhead for image gen-
eration in the proposed scheme, including both communication
and computation costs.

Currently, cloud servers and user-end devices are typically
equipped with high-bandwidth communication capabilities.
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TABLE VIII
CALCULATION OF COMMUNICATION DATA SIZES
FOR CONVOLUTIONAL LAYERS

. Conv Up(MB) Conv Down(MB)

Number of Devices Min Max  Total Min Max  Total

1 - - - - - -

2 023 796 8523 | 0.031 5 55.18

4 0.15 421 47.03 | 0.016 2.5 27.59

8 0.11 234 2792 | 0.008 1.25 13.79

Assuming the user’s mobile device supports SG communi-
cation, the average downlink speed of China’s 5G network in
Q4 2023 is 340.56 Mbps, and the uplink speed is 81.14 Mbps
[41]. Therefore, we use this as the communication bandwidth
assumption for the user device. Each cloud server is assumed
to have a high-speed fiber connection, far exceeding the
bandwidth of user devices. Hence, the primary focus is on
the communication performance of the user device. First, we
calculate the size of the data to be communicated and then
estimate the required transmission time based on the communi-
cation bandwidth. In the PPIDM scheme, communication and
computation costs mainly occur in the convolutional layers,
attention layers, and normalization layers. Below, we analyze
the time consumption of these computational layers.

1) Time Overhead for Convolutional Layers: For convolu-
tional layers, we calculated the input and output data sizes of
each convolutional layer per iteration for generating a single
512 x 512 resolution image in each cloud device. Additionally,
we computed the maximum and minimum communication
costs for a single convolutional layer upload/download and
the total communication costs for all convolutional layers, as
shown in Table VIIIL.

From Table VIII, it can be observed that as the number of
cloud devices increases, the convolutional data size processed
by each cloud device decreases linearly. In a scenario with 4
cloud devices, the user’s communication overhead per cloud
is as follows: the minimum upload data size for a single
convolutional layer is 0.15 MB, and the maximum upload
data size is 4.21 MB. After completing one iteration of
denoising, the total upload data size for all convolutional layers
is 47.03 MB. Similarly, the minimum download data size for
a single convolutional layer is 0.016 MB, and the maximum
download data size is 2.5 MB, with a total download data size
of 27.59 MB for all layers.

The total communication cost between the user and 4 cloud
devices is as follows: a total upload size of 188.12 MB
and a total download size of 110.37 MB. In a 5G network
environment, the theoretical upload time is 10.88 seconds,
and the download time is 2.59 seconds. Since upload and
download can occur simultaneously, the theoretical time over-
head for convolutional layers in one round of denoising is
approximately 10.88 seconds. Regarding computation time,
our device (NVIDIA 4090) achieves far lower computation
times than the aforementioned communication times, and the
multi-cloud device setup further reduces the required time.
Additionally, the computation cost can be pipelined into the
communication cost, making computation time negligible.
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TABLE IX
CALCULATION OF COMMUNICATION DATA SIZES FOR ATTENTION LAYERS

. . Att Up(MB) Att Down(MB)
Number of Devices Min  Max  Total Min Max Total
1 N C N N N N
2 090 268 2936 | 0.15 2.5 22.03
4 0.83 143 18.34 | 0.07 1.25 11.01
8 0.68 081 12.83 | 0.03 0.625 5.50
TABLE X

CALCULATION OF COMMUNICATION DATA SIZES FOR
GROUPNORM LAYERS

. GN Up(MB) GN Down(MB)
Number of Devices Min  Max Total Min Max Total
1 - _ - - - -
2 0.15 7.5 171.87 | 0.0002  0.0002  0.059
4 0.07 3.75 85.93 0.0002  0.0002 0.059
8 0.03 1.87 42.96 0.0002  0.0002  0.059

Thus, the total image generation time can be considered equal
to the communication time, which is 10.88 seconds.

2) Time Overhead for Attention Layers: For attention lay-
ers, we calculated the communication data size in the same
manner as for convolutional layers. The results are shown in
Table IX.

From Table IX, as the number of cloud devices increases,
the attention layer data size processed by each device
decreases, but the reduction is less significant compared to
convolutional layers because the key-value (K-V) components
are not split; only the query (Q) component is divided. In the
standard setup with 4 devices, the minimum upload data size
for a single attention layer is 0.830 MB, and the maximum
upload data size is 1.437 MB. After completing one iteration
of denoising, the total upload size for all attention layers
is 18.347 MB. Similarly, the minimum download data size
for a single attention layer is 0.078 MB, and the maximum
download data size is 1.25 MB, with a total download size of
11.01 MB for all layers.

The total communication cost between the user and 4
cloud devices is as follows: a total upload size of 73.38 MB
and a total download size of 44.06 MB. In a 5G network
environment, the theoretical upload time is 7.23 seconds, and
the download time is 0.13 seconds. As with convolutional
layers, the computation time for attention layers is negligible
compared to the communication time. Thus, the theoretical
time overhead for attention layers in one round of denoising
is approximately 7.23 seconds.

3) Time Overhead for Group Normalization Layers: For
group normalization layers, the communication data statistics
and computation results are shown in Table X.

From Table X, as the number of cloud devices increases,
the data uploaded by the user to each cloud device for group
normalization proportionally decreases, while the download
data size remains constant. In the standard setup with 4
devices, the minimum upload data size for a single group
normalization layer is 0.07 MB, and the maximum upload
data size is 3.75 MB, with a total upload size of 85.93 MB.
The download data size for a single layer is 0.0002 MB, and
the total download size is 0.059 MB.
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The total communication cost between the user and 4 cloud
devices is as follows: a total upload size of 343.74 MB and a
total download size of 0.23 MB. In a 5G network environment,
the theoretical total upload time is 33.89 seconds, and the total
download time is 0.005 seconds. As with convolutional and
attention layers, the computation time for group normalization
layers is negligible compared to the communication time.
Thus, the theoretical time overhead for group normalization
layers in one round of denoising is 33.89 seconds.

4) Overall Time Overhead: On an NVIDIA 4090 device
under a 5G communication environment, the total commu-
nication and computation time overhead for convolutional,
attention, and group normalization layers between the user
and the cloud servers is 52 seconds. Our scheme balances
the user’s computational resources, the privacy protection of
cloud data, and the quality of the generated images, which
inevitably results in high communication costs.

VI. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
PPIDM from the perspectives of input text and generated
images.

A. Input Text Privacy Protection

Input text represents the semantic intent of the user’s
desired generated image and is part of the user’s intellectual
property. Therefore, its privacy protection is crucial. During
the inference process, the input text prompt is transformed
into high-dimensional text embedding features through a text
encoder. The reverse parsing of high-dimensional text embed-
dings presents significant challenges [42], making it difficult
to reconstruct the original text. Key challenges in reversing
high-dimensional text embeddings include:

e Lossy Compression: The text embedding process discards
fine-grained details, making exact text recovery mathe-
matically infeasible.

e High Dimensionality: The vast and sparse nature of
the embedding space adds computational and theoretical
barriers to reverse parsing.

e Semantic Abstraction: The embeddings encode high-level
semantics rather than specific lexical or syntactic details,
further complicating recovery.

Moreover, various defense mechanisms have been developed
to enhance the security of text features, such as embedding per-
turbation, dimensionality expansion, and differential privacy.
Given the maturity of these techniques, our work primarily
focuses on images security challenges in the inference phase
of diffusion models.

B. Generated Image Security

The security of the generated images in PPIDM is enhanced
through techniques such as feature partitioning and the denois-
ing process of diffusion models, which significantly reduce the
effective information entropy available to attackers. Even if an
attacker obtains some feature sub-blocks, the recovered image
information remains vague and fragmented, making it difficult
to reconstruct the original plaintext image. Below, we conduct
a detailed security analysis of the scheme.
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1) Entropy Limitation of Single Cloud Servers: The image
features are divided into N x P sub-blocks, distributed
across N independent cloud servers. The information entropy
(denoted by H(-)) of each subblock is H(Block) = %.

The information entropy accessible to attackers from a

single cloud server is:

p
Havacker = Hsingle = »_ H(Block;) )
i=1
The information entropy required to reconstruct a complete
image is:
NXxP
HReconstruction = Z H(Bl) + H(A’I“’I“) &)
i=1
where Arr denotes the arrangement of the sub-blocks,
H(Arr) # 0 . The single-cloud server has only part of the
feature block information and cannot provide H (Arr), which
makes the attacker unable to achieve global recovery.

2) Joint Effect of Noise Protection: In the T-step iteration
of the diffusion model, the features of the first 7' — 1 steps
are dominated by noise o. Even if attackers obtain complete
features, their effective information is weakened. The entropy
of sub-block features stored on a single cloud server is:

H(Featurey)

N
H(Featurer) — (T —1—1t)H (o)

- ¥ (6)

where H (o) represents the noise entropy. When ¢ # T — 1,
i.e., the denoising step is not fully completed, the intermediate
features always contain noise. However, the attacker can only
get the intermediate features because the final denoising is
done by the client. This noise significantly reduces the quality
of plaintext image reconstruction through standard decoders.
3) Complexity of Sub-Block Arrangement: The complete-
ness of the image depends on the spatial arrangement of N x P
sub-blocks. The arrangement information entropy is:

H(Arr) =log((N x P)!) 7

H Single =

From the attacker’s perspective, no arrangement information
entropy can be obtained, i.e., H(Arr) = 0. The lack of
global sub-block arrangement information further limits the
possibility of image reconstruction.

Therefore, the possession of only partial feature blocks,
along with noise interference and the absence of sub-block
arrangement information, prevents a single cloud or attacker
from reconstructing the complete image, thereby ensuring the
security of the generated images in PPIDM.

VII. DISCUSSION

In this section, we discuss the future development of pri-
vacy protection for image generation using diffusion models
in cloud environments. As diffusion models are applied to
various tasks and scenarios, privacy protection techniques
need continuous development and optimization. Below, we
categorize and summarize potential future directions from
different perspectives:
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Reducing communication costs is a key challenge for
optimizing the efficiency of privacy protection methods. For
security purposes, our proposed scheme requires frequent
data transmission, resulting in high communication costs. In
the future, methods such as optimizing data transmission
protocols, compressing feature data, and reducing redundancy
can be employed to decrease communication costs, thereby
improving the efficiency of collaborative computing in the
cloud. These improvements will enhance the real-time perfor-
mance of generation tasks, reduce the reliance of cloud-based
generation tasks on user bandwidth, and make privacy protec-
tion methods in cloud computing more efficient and practical.

Multi-user collaborative generation tasks represent another
privacy protection challenge that needs to be addressed. In
scenarios where multiple users simultaneously use diffusion
models, it is crucial to protect the data privacy of each user
during the collaborative computing process. This will further
enhance the productivity of diffusion models and increase
users’ trust in the system. A suitable approach may involve
combining other advanced privacy protection techniques, such
as Secure Multi-Party Computation (MPC) and Differential
Privacy. By incorporating these technologies, it is possible
to ensure that data from all parties remains secure during
collaborative computation and to add noise to the generation
process for further privacy protection. Additionally, integrating
watermarking techniques can embed invisible watermarks into
the generated images, enabling tracking and identification of
the source of generated images, thereby enhancing the level
of privacy protection [43].

Beyond text-to-image generation, other diffusion model
tasks, such as image-to-image generation and image editing,
face similar privacy challenges. These tasks often involve
processing user input images or editing content, which may
contain sensitive data. Extending our method to cover these
tasks will help effectively protect user privacy during image
transformation or editing processes. Furthermore, as diffusion
models are increasingly applied to multimodal tasks (e.g.,
text-to-video generation) [44], [45], privacy protection issues
will become more complex. In the future, privacy protection
mechanisms must address the safeguarding of multimodal data
to ensure the security of all types of data privacy.

VIII. CONCLUSION

In this paper, we study the privacy protection problem
of image generation during the inference phase of diffusion
models in a cloud environment for the first time. We find
that this task is characterized by the denoising-encryption
adversarial nature and the stepwise generation property of
diffusion models, which makes existing inference privacy
protection schemes unsuitable for diffusion models. To address
this, we propose a privacy-preserving diffusion model infer-
ence framework (PPIDM). On the one hand, this framework
offloads complex computational layers from the user side to
the cloud, significantly reducing the computational overhead
on the user side. On the other hand, by partitioning feature data
and distributing it to multiple non-colluding cloud servers for
independent computation, the system’s security is enhanced.
We conducted a comprehensive evaluation of PPIDM on both
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regular and artistic datasets. The results demonstrate that
PPIDM achieves a good balance among user-side overhead,
generation quality, and data security. We hope that PPIDM
will drive advancements in the field of privacy protection for
diffusion models.
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