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Split Learning on Segmented Healthcare Data

Ling Hu", Tongqing Zhou"”, Zhihuang Liu

Abstract—Sequential data learning is vital to harnessing the
encompassed rich knowledge for diverse downstream tasks, par-
ticularly in healthcare (e.g., disease prediction). Considering data
sensitiveness, privacy-preserving learning methods, based on fed-
erated learning (FL) and split learning (SL), have been widely
investigated. Yet, this work identifies, for the first time, existing
methods overlook that sequential data are generated by different
patients at different times and stored in different hospitals, failing
to learn the sequential correlations between different temporal
segments. To fill this void, a novel distributed learning framework
STSL is proposed by training a model on the segments in order.
Considering that patients have different visit sequences, STSL first
implements privacy-preserving visit ordering based on a secure
multi-party computation mechanism. Then batch scheduling par-
ticipates patients with similar visit (sub-)sequences into the same
training batch, facilitating subsequent split learning on batches.
The scheduling process is formulated as an NP-hard optimization
problem on balancing learning loss and efficiency and a greedy-
based solution is presented. Theoretical analysis proves the privacy
preservation property of STSL. Experimental results on real-world
eICU data show its superior performance compared with FL and
SL (5% ~ 28% better accuracy) and effectiveness (a remarkable
75% reduction in communication costs).

Index Terms—Sequential data analysis, distributed machine
learning, split learning, data privacy, healthcare data.

1. INTRODUCTION

HE processing and analysis of healthcare data have always

been an essential focus in medical informatics towards
assisting treatment and enhancing the quality of care delivery.
The healthcare data (e.g., blood albumin) is featured as time
series data, so-called sequential data, in nature because the health
condition of patients changes over time and the treatments may
often be long-term [1]. Nurtured by such data, a considerable
body of research has explored building deep learning models
for predicting disease/mortality risk [2], analyzing treatment [3],
discovering new drugs [4], etc.
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Fig. 1.  Anillustrative example for segmented healthcare data.

The assurance of patient privacy is the premise of exploring
healthcare data [5] and lots of efforts have been devoted to
this issue [6]. From the aspect of data management, there is a
drive to establish cross-nation cohorts for large-scale healthcare
database [7], but the process of collecting ethical consent is not
trivial. As to technical advances, we have witnessed the proposal
of federated learning (FL) [4] and Split Learning (SL) [8], [9]
in recent years, both dedicated to privacy-preserving distributed
data learning. In essence, FL has a model trained at different
clients with private data and aggregates the locally trained
models in a global server, while SL partitions the model into
consecutive chunks and has a client and server collaboratively
train the chunks. Both paradigms have been widely adopted in
healthcare informatics [ 1], owing to their advantages of retaining
sensitive patient data in the trust zone (i.e., the hospital that
stores it).

However, we note that existing FL and SL designs overlook
the spatial characteristics of sequential healthcare data by inher-
ently assuming that the comprehensive data sequence of a patient
is stored in one institute/hospital. In practice, patients would
often visit several different (specialized) hospitals depending
on their disease progression and the hierarchical medical ser-
vices they use. As reported, in 2022, Chinese residents visit
healthcare facilities six times on average [10]. In China alone,
the number of cross-province visits reached 110.5 million in
2022 [11]. As a result, the temporal data sequence of a patient
is spatially distributed in several hospitals, which is denoted as
segmented healthcare data. For instance, in Fig. 1, each patient
has a visit sequence of 3 different hospitals for his/her diseases
with clinical records of 3 segments. Traditional FLL and SL
are ill-suited to such segmented data: FL trains data in each
hospital independently, thus missing the temporal knowledge
of disease progression across hospitals. SL, although seems
to suit distributed segments with distributed model chunks,
partition models in static order and number of chunks, which
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couldn’t cater to various visit sequences of real-world clinical
practices.

This work first investigates the privacy-preserving learning
problem on segmented healthcare data. Considering the data
split situation, we propose to adapt SL to support the distributed
learning process and design a novel framework STSL (i.e.,
Spatio-temporal Split Learning). At its core, STSL performs:
1) visit ordering to identify the sequence of distributed data
segments of all users/patients; 2) spatially groups patients into
training batches according to visit sequence (i.e., patients in a
batch have the same sequence); and 3) temporally partitions
models to hospitals for split learning. Yet, the construction of
STSL is hindered by two challenges:

C1 How to protect patients’ privacy from leaking to other
entities? The healthcare records and visit time of pa-
tients are sensitive information and should be protected
according to privacy and ethical regulations [5]. Using
SL essentially assures data privacy, while its prerequisite
ordering step may incur the leakage of the visit time.

C2 How to jointly accommodate learning efficiency and util-
ity w.r.t. training batch construction? Intuitively, fewer
batches incur smaller communication for distributing
and integrating sub-models but would exclude more data
segments for aligning the inner-batch visit sequence. As
with the example in Fig. 1, we have to discard the data
of patient #001 in hospital h; and that of patient #002
in hospital h,,, when scheduling them into one batch
for one-shot learning. However, this would cause the
assessment model to miss the prediction knowledge by a
large margin (abnormal indicators appear in hospital /., ).
Proper balance must be attained in batch scheduling.

To relieve C1, STSL designs a privacy-preserving visit or-
dering mechanism, which guarantees that patients’ visit time
information is retained in its original hospital and constructs a
healthcare tree for efficient retrieval. Meanwhile, STSL formu-
lates the batch scheduling process as an optimization problem on
communication costs and data loss. We prove the NP-hardness of
this problem and propose a greedy-based solution to selectively
schedule data segments into batches. Furthermore, this is the first
instance where temporally and spatially distributed healthcare
data has been considered in privacy-preserving data analysis. As
aresult, there may not be any suitable state-of-the-art to compare
it with. To address this, we have created a segmented healthcare
dataset by synthesizing real-world ICU data and compared the
performance of STSL with conventional FL. and modified SL.
The main contributions of this work are as follows:

e This is the first work that investigates privacy-preserving

learning on spatio-temporal distributed sequential data
(i.e., segmented data), particularly dedicated to the health-
care context.

® A novel framework STSL is presented for protecting pri-

vacy with secure ordering and distributed learning and
attaining split learning on segmented data with batch
scheduling.

® We formulate the scheduling in STSL as a penalty-aware

optimization problem and use selective data discarding and
combinatorial optimization to address it.

IEEE TRANSACTIONS ON BIG DATA, VOL. 11, NO. 5, SEPTEMBER/OCTOBER 2025

e A formal proof of privacy preservation is provided, and
experimental results demonstrate the superior accuracy
of STSL compared to the FL and SL baselines, thereby
illustrating the effectiveness of extracting knowledge from
distributed data segments.

II. RELATED WORK

Nowadays, numerous deep learning models have been pro-
posed for analyzing and predicting healthcare data. This section
begins by highlighting facts on healthcare data. It then pro-
ceeds to discuss various privacy-preserving distributed learning
frameworks that currently exist, showcasing their workflows and
applicable scenarios. Finally, it illustrates methods on sequence
data profiling, providing insights into their effectiveness for
healthcare applications.

A. Sequential Healthcare Data Learning

Patients usually pay visits to hospitals multiple times for
healthcare services. Meanwhile, with the increased mobility of
the population, people tend not to be confined to a single hospital
for medical treatment. As a result, healthcare data is charac-
terized by multiple origins [12], massive volumes [13], and
sequential nature [14]. Recently, sequential healthcare data has
been collected by countries worldwide, with the United States
establishing eICU database [15], Australia initiating “My Health
Record” project [6], China establishing ICU database [16], and
SO on.

Sequential healthcare data learning, combining sequential
healthcare data and machine learning, can offer assistance in
clinical decision-making [12] (e.g., disease prediction by pro-
filing patients with their sequential data). For structured elec-
tronic healthcare records (EHRs), [17] proposed a data-driven
approach, which encoded longitudinal temporal information, to
identify Parkinson’s disease. Timeline [3] employed an attention
mechanism to learn the weights of patients’ multiple visits and
formulated a time-aware disease progression function to simu-
late the decay of healthcare information over time. HiTANet [18]
integrated both local and global attention mechanisms and in-
corporated time vectors as part of the input to consider the
monotonicity of time decay. For unstructured healthcare data,
CGNet [2] proposed to integrate graph knowledge for feature
reconstruction in the detection of pneumonia, and VecoCare [19]
employed joint representation learning on structured EHRs and
unstructured clinical notes. As illustrated in Table I, though these
approaches enhance model effectiveness in medical tasks, they
primarily rely on gathering data for centralized learning, which
neglects the pivotal privacy concerns in healthcare services.

B. Privacy-Preserving Distributed Learning

Privacy concerns are often raised with centralized data stor-
age, which may not comply with regulations such as GDPR [5].
Therefore, researchers prefer distributed frameworks that pre-
serve privacy, such as federated learning [20] and split learn-
ing [21] for sequential data learning in healthcare. Federated
learning (FL) is a distributed learning framework that enables
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TABLE I
COMPARISONS ON MAINSTREAM LEARNING FRAMEWORKS AND OUR STSL
FRAMEWORK

Design Considerations and Capabilities
Resource- Segmented

Framework Data Model . Examples
Privacy  Privacy cons?ramed Data )
Clients Exploration
. Timeline [3];
Centralized o N/A o HiTANet [18];
2 VecoCare [19].
Federated ~
Learning [ ] O (@] O MELLODDY [4].
SL-1DCNN [8];
Split MS-SL [9];
Learning 4 L4 4 o LSTMSPLIT [26];
FedSL [27].
STSL (Ours) [ ] [ ] [ ] [ ] STSL

@Fully Support ONot Support

individual clients to train a complete machine learning network
with local data. This process involves parallel training of local
models for a certain number of epochs, followed by the aggrega-
tion of these updates at the server to form a global model. Once
the global model has been created, it is shared among all clients
for further training in the next round. This iterative process
continues until the algorithm converges, resulting in a robust and
accurate model. Moreover, many efforts have been made to en-
hance the performance of FL [22], [23] and ensure privacy [24].
Nowadays, some works [25] achieve privacy-preserving training
on biomedical data with the help of FL.

In addition to safeguarding data privacy, split learning (SL) is
an innovative framework designed to alleviate the computation
costs on clients. By dividing the deep learning network w into the
server-side deep layers (ws) and the client-side shallow layers
(w.), split learning ensures model parameter privacy and enables
clients to offload computationally intensive tasks to the server,
thereby reducing computation costs on resource-constrained
clients. To connect w¢ and wg, the activation (so-called smashed
data) of the split layer, known as the cut layer, in the client-side
shallow layers is sent to the server. In return, the server conducts
forward propagation with these smashed data, calculates gradi-
ents, conducts backward propagation, and sends the gradients
back to the client.

Although FL and SL provide privacy protection, they assume
that clients’ datasets are independent and lack correlations,
implying that a patient’s comprehensive data sequence is stored
within a single hospital.

C. Privacy-Preserving Sequence Profiling

As shown in Table I, some attempt to utilize the federated
learning framework for sequential data learning. The most no-
table work is MELLODDY [4], which has successfully imple-
mented industry-scale federated learning to support drug dis-
covery, yielding promising outcomes. However, MELLODDY
focuses on situations where the comprehensive data sequence
of a patient is stored in one institute/hospital. The others adopt
the split learning framework. SL-1DCNN [8] investigated the
effectiveness of 1D CNN with split learning for sequential data
learning. Nevertheless, SL-IDCNN collected all data on one
client. Furthermore, the smashed data would violate privacy
preservation as it allows for inference of the original data.
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While LSTMSPLIT [26] and MS-SL [9] are oriented towards
distributed data to explore the effectiveness of split learning, the
complete sequence of an object also remains centralized on one
client.

Due to the multi-origin nature of healthcare data, FedSL [27]
attempted to explore distributed sequential data. However, their
research is limited to the first half of data in a certain client, and
the second half in the server. This fixed setup lacks flexibility in
real-world applications as healthcare data is often disorganized
and cannot be regularly divided into two segments in the same
order. Additionally, no single hospital can own the second-half
data of all objects like the server. Hence, the above methods are
still not applicable for segmented healthcare data learning where
each patient visits multiple hospitals.

III. FRAMEWORK AND PROBLEM ANALYSIS

To fill in the technique void for exploring segmented health-
care data (e.g., In Fig. 1, each of the two patients has a visit
sequence of 3 different hospitals for his/her diseases with clinical
records of 3 segments.), this work presents a novel frame-
work STSL, short for spatio-temporal split learning. Whereas
“spatial” means to conduct consecutive learning on the data of
different patient groups (i.e., split in the patient dimension), each
with the same visit sequence, “temporal” means to divide the
model into portions according to patients’ sequential visits to
different hospitals (i.e., split in the hospital dimension). This
section describes the overall design of STSL and the analysis of
its crux problems.

A. Framework Design of STSL

The architecture of our STSL framework is shown in Fig. 2
with an example scenario of n patients visiting m hospitals.

Definition 1. (Sequential data): Sequential data refers to a
series of data points arranged in a specific order, typically based
on the progression of time. Each data point in the sequence is
related to the preceding data point.

Definition 2. (Segmented healthcare data): Each patient u;
has a visit trajectory/sequence S; to several hospitals, where the
4 hospital in S; records the healthcare data @’ of patient wu;
during his visit to it. We denote data dZ as a segmentation of
the healthcare data of patient u; and the set of these pieces of
segmentation as D;.

Segmented healthcare data is short for segmented healthcare
sequential data, as it represents a specific type of sequential
data, distributed both temporally and spatially. In the example
of Fig. 2, the visit sequence of uy is hy — he — hg, which
renders three pieces of segmentation held in different hospitals,
presented as (1), (2), and (3). Given the segmented healthcare
data input, STSL intuitively attempts to split the model to be
learned into partitions that match the split of healthcare data.
This process works in three phases: ordering each patient’s data,
making a schedule for the training batches, and performing split
learning on the set batches consecutively.

1) Patient visit ordering: Building a sequential model requires
samples in the correct order, such that the tuned model could
predict the future event given the current observed data sequence,
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order of each patient without gathering their data, splits the segmented data horizontally, and partitions the model vertically for batch-based split learning.

e.g., a sentence in NLP. Hence, in the context of this work,
the first phase manages to figure out the visit sequence of each
patient among all the relevant hospitals. Ideally, this would yield
a patient-hospital matrix with each element the order number
that a specific patient pays a visit to the corresponding hospital
(e.g., element (2,2) is @ as ug Visits hg first during its seek of
medical service).

2) Batch scheduling: The visit sequence and the number
of hospitals visited by different patients are hardly the same.
As a result, it is impossible to perform a one-shot training
with one split of the model exactly matching the segmentation
distributions of all patient data. For example, if putting the first
part of the model in hq, then the data of uy and u3 would be
excluded as h; is never visited or not visited as the first by them.
As a remedy, in the second phase, STSL assigned patients into
K different groups (i.e., ;) with ones in the same group sharing
the same or similar visit sequence. Particularly, we denote the
training schedule of the k** group as batch By, which defines
the selected segments of each patient in Uy, the corresponding
visit sequence Sy of the left segments and the training order k.
For alignment purposes, some segmentation may be discarded
to include more data in a batch (e.g., (1) and (3) of u3 in Fig. 2).

3) Split learning on batches: The batch-scheduling result
is then used to organize model split and learning. It performs
training on each batch with the tuned parameter of the former
batch passed to the next one. Specifically, for the k*" batch that
involves data on |Sy| hospitals, the controller server partitions
the target model M (w.Lo.g., LSTM in this work) into exactly
ISk| sub-models and offloads the j" sub-model My, to the j*"
hospital in this batch.

Based on the partition, forward propagation is conducted in a
way that the 1°% hospital in Sy, calculates the outputs (i.e., hidden
layer activation) of its sub-model with the batch data it holds and
transmits these intermediate results to the 2"¢ hospital through
the network. The 2 hospital then calculates its sub-model out-
puts based on the outputs of the former sub-model and its local
segmented data. The propagation and activation transmission
ends with a prediction at the last hospital in Sy, which estimates
a loss between the ground truth and the prediction. Next, the last
hospital initials back-propagation with gradient calculation and
transmission, optimizing the sub-models in each hospital with
gradient descent. For example, in batch B, of Fig. 2, the model
is partitioned into M1, M?, and M3 and offloaded to hospitals

TABLE 1T
FREQUENTLY USED NOTATIONS

Notation Description
B The k" split learning batch in schedule, specifying a
k group of patients, their selected data, and visit sequence.
s An array of hospitals, whose sequence denotes the visit
k order of patients in batch By,.
M, The 5" partition of the target model M in batch By.
h; € H is a hospital participating in training with local
H, h; R
patients’ healthcare records.
Uy, C U is the group of patients assigned to batch By,
U, Uy : -
with the same visit sequence Sy.
D & D; is the healthcare data of u; € U and df € D;is
B his/her jt" data segment.
. J - indicates i 8 J
X, x{, 2 T € X, indicates the involvement of segment d; of

patient u; in its assigned batch with index z;.
[REAIN ) hSJ ) represents the hospital that collects the j* data
i o0 Y

segment of u; which consists of nEJ ) medical records.

Note: In the healthcare context, users who generate data refer to patients
who visit various hospitals, so u;, instead of the symbol “p”, is used to
represent a patient and also avoid confusion with the probability.

h1, ho, and hg, respectively. Wherein, ho tunes /\/l% with the
output of M, gradient from hg, and its local data, i.e., @ of uy
and (3) of u,,.

After several rounds of forward and back-propagation, the
controller server will stitch the tuned sub-models of batch By
together into a complete model M, and partition M, into
IS, . , | sub-models for the learning of the following batch By, ;.
Finally, the controller server releases the concatenated model of
the last batch as the joint-learned model, which is believed to
absorb knowledge from segmented healthcare data distributed
in different hospitals.

B. Key Problems in STSL

Two key problems arise in launching STSL. Q1: How to
protect patients’ privacy, including both their healthcare records
and visit time to each hospital, from leaking to other patients
or other hospitals? This also settles our privacy assumptions,
together with an honest-but-curious threat model. Q2: How
to construct proper batches considering both efficiency and
learning performance? We analyze concrete privacy protection
requirements in Q1 in Section III-B1 and propose two metrics
for analyzing Q2 in Section III-B2. For ease of understanding,
we list some key notations in Table II.
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1) Privacy Protection Requirements: The increasing promi-
nence of privacy concerns has become a significant obstacle to
data sharing in healthcare, whether to protect patient privacy
or maintain competitive advantage. In the context of STSL,
three types of entities are involved, i.e., hospitals, patients,
and the controller server. The data of patient u; is in the
form of [u;, [< t},d%,hgl) > .., < tg,dg, h;j) >,...]], includ-
ing his/her healthcare records d{ with start timestamp tg stored
in hospital hgj ), which also indicates his/her visit sequence
S; = (M, hY Ly

Threat model: We assume all the entities are honest-but-
curious, which means they would perform the learning or
scheduling tasks in STSL and may deduce data of others.

Privacy Boundary: Every visit record is sensitive and should
not be disclosed to entities other than the patient himself/herself
and the hospital that stores it. On one hand, one’s name, visit time
to each hospital (tg), and healthcare data (df) in each hospital
are private. On the other hand, for sequential data learning, a
patient’s visit sequence (S; inherently telling whether he/she has
visited some hospitals) is necessary and believed to be secure to
reveal to the controller server. These set the privacy boundary
of this work.

STSL uses split learning that trains sub-models on local
data, shares only the activation (or gradient) parameters to
downstream (or upstream) hospitals in its batch, and uploads
sub-model parameters to the controller server. By retaining
segmented data in the hospital that generates it, the privacy of
patient data is protected. The tricky part remains to attain the
visit sequence of each patient without disclosing the specific visit
time to each hospital, which will be addressed in Section I'V-A.

2) Communication Costs Versus Data Loss: In traditional
split learning, the transmission of sub-models among different
hospitals incurs communication costs, while STSL’s learning in
batches aggravates the cost by K time. Intuitively, with fewer
batches, like K = 1, communications costs would be largely
reduced. However, this would inevitably discard more data,
leading to a degradation of learning performance. Next, we
formulate these two aspects in this part.

Formulation of communication costs: We focus on merely the
communication cost instead of computational, as the latter is
reduced with fewer training tasks at each hospital in the context
of STSL compared to traditional split learning. The communica-
tion traffic of STSL can be categorized into three aspects: private
communication for patient visit ordering, model communication
of offloading and uploading sub-model between the controller
server and hospitals, and parameter communication during acti-
vation forward-propagation and gradient back-propagation. The
first aspect is not impacted by the scheduling process and has a
fixed cost, so we focus on the latter two. The volume of model
communication is decided by the number of partitions and the
multiplex of sub-models between neighbor batches, which could
be formulated as:

[Sk|

22

(Mk: Mk 1) (1)
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where k is the training order of the batch, |M f | represents the
size of sub-model MY and I(M?,M?il) € {0,1} indicates
whether a hospital receives the same sub-model as the former
batch (i.e., I(-,-) =0 if M? and M;’?’l are the same and
partitioned to the same hospital, otherwise, I(-,-) = 1).

Parameter communication is closely related to the number of
samples in each batch and the number of segments:

Cp B) = (ISk| = 1) - [Ui| - (wy + ws), ()

where wy and wy represent the size of activation in forward-
propagation and the size of gradients in back-propagation, which
are static for a specific model M. |U;| and |S| are the number
of patients and selected hospitals in batch B.

With these, we formally calculate the communication costs
of a batch scheduling B as Cipa1(B) = Zszl(CM(IEBk) +
Cp(Bx)).

Formulation of data loss: If STSL uses all the healthcare data
for training, it may get batches with only one patient, adding up
communication costs with limited gain on learning performance.
Hence, some data are excluded in constructing batches for
efficiency. The controller server prudently assrgns z] € {0,1}
to each segment d] of every patlent u;, where 27 = 1 means
the segment is 1ncluded in the zZ batch, otherwrse excluded.
Such discarding of data, on the other hand, degrades learning
performance as providing fewer samples and the knowledge of
some valuable samples may be ignored.

To form such loss prior to model evaluation, the decreased
amount of data is a straightforward measure. Meanwhile, we
note that the healthcare data generated during patients’ recent
visits to a hospital is more valuable than those recorded months
or years ago, considering that doctors often take account of
recent diagnoses. To mimic such diagnostic behaviors, we intro-
duce a value weight v} to each data segment d] with later data
having larger v/. Hence, we have the overall value o(D;) and
the remaining value r(D;|B) of D; after scheduling as:

D] |Ds|
o) =3 (ldl|-of), r(DifB) =Y (1d]] - o] -o]),
j=1 j=1
3)
where Z‘D il vl =1and v is a time-dependent weight.
Furthermore the impact of discarding data segments of a
patient is exponentially increased rather than linearly. Con-
sidering this, we use a multi-tier loss measuring strategy
by setting a penalty factor (3; for each tier of data loss.
The higher tier corresponds to larger o(D;) — r(D;|B) and
is set with a larger penalty factor. Therefore, given schedul-
ing that discards data with xZ =0, the overall data loss is
calculated as:

Bi (o (D;) —r(Di|B)),
ifT(DzHB) Zn - ( 1)
Bi (1=m1) o (Di)+ B2 (mo (Di)—r (Di|B)) ,

if N1 > 7 (D4|B) /o (D;) > n2

P (D,|B)=

“
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where n = [n1,m2,...,m) (7 € [0,1], m; >n; if i < j ) and
B =[B1,P2,---,0: (B; € RT). By integrating the data loss of
all patients, we have DP(B) = > | DP(D;|B).

STSL executes split learning batch-by-batch, reducing com-
munication costs by judiciously discarding data. The crucial
issue is searching for a balance between communication costs
and data loss. We will address this issue in Section I'V-B.

IV. KEY COMPONENTS

There is a controller server (hereinafter referred to as the
server) in the proposed STSL framework, responsible for
privacy-preserving visit ordering and batch scheduling, includ-
ing Data Selection and Combinatorial Optimization. Subse-
quentially, STSL can realize split learning on batches.

A. Privacy-Preserving Visit Ordering

1) Preliminaries: While visit time is privacy, the systematic
organization of EHRs can reveal the progression of a disease and
assess the effectiveness of a diagnosis [3], [17], [18]. Hence, the
first critical challenge is privacy-preserving visit ordering. This
involves arranging patient visits in chronological order privately,
amounting to a secure multi-party multi-dimensional ordering
challenge.

Confidential ordering approaches, Shamir secret sharing [28]
and homomorphic encryption [29], cannot be extended to multi-
party ordering. [30] examines multi-party scenarios but restricts
analysis to single-data comparisons. Obfuscated circuits [31]
have also been proposed to securely compute any function in cir-
cuit form. However, this method faces limitations due to complex
computations. [32] comprehensively addresses scenarios where
multiple participants have repeated elements, but their work
is focused on one-dimensional data. Actually, visit ordering is
often complex, involving multiple parties and dimensions.

2) Calculation Principle: To obtain patients’ visit sequences
and the associated number of medical records ' without revealing
their specific visit time, privacy-preserving visit ordering is
proposed. As illustrated in Fig. 3, this ordering involves the
following four stages.

Stage 1: Roll Polling aims to securely collect patient visit
information from participating hospitals.

Step 1 The server sets a candidate hospital set H* = H and
initialize an all-0 binary matrix Yy = [0]“/*7 based
on the participating patient set I/ and the time granu-
larity 7' 2. The value at (i, j) of this matrix indicates
whether patient u; visited a hospital at time ;, with
value 1 for positive. During ordering, this matrix is
first randomly inverted at a hospital, passed to other
hospitals for collecting their visit information in turn,
and finally returned to the initial hospital to gain the
ordering, thus named a “polling matrix”.

1A patient visit can last for a while and produce multiple medical records.

ZFor instance, with monthly intervals, 7' = 12 and the start timestamp ¢} =
[2023,/02/15] of the first segment d} of patient uy is regarded as ¢{ = 2. The
finer the granularity, the greater the value of 7".
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Fig. 3. The flow diagram of privacy-preserving visit ordering.

Step 2 The server randomly selects a hospital h, € H* and
passes the polling matrix Y, to h,. Then h, is re-
quested to randomly invert the value of ;. (i.e.,
let y;, = 1) with a probability for each i € [1, |/|]
and t € [1,T] and record corresponding elements in
arecorder R = {(i1, t1), (i2, t2),...}.

Next, h, modifies the polling matrix to Y,, where
for each u; ¢ Uh,)s y;t = ¥, and for each u; €
Ulh,), Yi s = Wit»if g visithg att (y; , = yi 1 else).
After removing h, from H*, the server randomly
selects a hospital h, € H* and informs h, to pass
Y, to h,. Then h, modifies the polling matrix to Y,
according to the regulations above.

Ordering Continuously performs Step 3 until H* becomes
empty. Eventually, the polling matrix Y* will encompass the
visit time information of all patients.

Step 4 The server informs the last hospital to send Y* to the
first chosen hospital &, where some elements in Y*
are inverted again to revert to their original values with
the help of the recorder R:

*
) i

Yit = *
yi7t>

Step 3

if (i,t)€eR
else

®)

The combination of Step 2 and Step 4 enhances privacy pro-
tection and prevents the second hospital from inferring specific
information about the first hospital by Y, . For instance, the server
initializes a polling matrix Y, and passes it to arandomly selected
hospital hs in Fig. 3. Subsequently, /o randomly sets y; 3 =
1, y2,2 = 1 and so on, while recording R = {(1,3), (2,2),...}.
Then ho modifies Y based on local data and passes it to the
next hospital h,, randomly selected by the server. As a result,
h,,, cannot discern whether an element with a value of 1lin the
matrix means a patient visit or a random invert nor can they
ascertain if the original value of an element with a value of O is 1
or not, thus preventing visit inference, thereby ensuring privacy
protection.

Stage 2: Index Inference requires each h, € H to infer se-
quential order for each local patient u; € U;,,) based on the
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polling matrix Y* and calculate the corresponding numbers of
medical records.

Step 5 The server informs h, to send reverted Y* to each

hospital h, € H, then h, calculates the sequential

order 7! in corresponding visit time ¢ for patient

u; € U(}Lm)i

k=t
=y (i =1). (6)
k=1

Next, h,, calculates the number of medical records nf
for patient u; during period ¢ and constructs an infor-
mation item {i : (hy, 7!, nt)}. For example, hospital
ho constructs an information item {1 : (ho,2,18)},
meaning that patient u;’s 2"% visit happened in hos-

pital ho (i.e., h§2) = hs) and generated 18 records

(ie., n§2) = 18). Finally, h, sends its information
dictionary {i : (hy,7},n}) bu;euy, ,, to server.

Stage 3: Healthcare Scenario Inference is primarily con-
cerned with deducing the complete healthcare scenario, lever-
aging the information dictionaries provided by .

Step 6 Foreachu; € U, the server sorts the corresponding in-

formation items {i : (hy, 7%, nk)}, ey received from
H based on the value of 7!, ordering s healthcare seg-

ments as (A", "), (b, n{),.... (b, n{)].

7

Consequently, the visit sequence S(u;;X;) =
[hgl), hl(?), A hz(s)] and the corresponding numbers
of medical records [ngl), n,EQ), e ,nl(-s)] can be in-

ferred. Taking u; as an example, the server sorts infor-
mation items of u; as {1: (h1,1,9),1: (ho,2,18),
1:(hs,3,6)}, orders his/her segments as
[(h1,9), (h2,18),(hs3,6)], and finally deduces
his/her visit sequence S(ui;Xi) = [h1, ha, hg]
and corresponding numbers of medical records
[9,18,6]. Ultimately, the patient-hospital matrix
can be deduced, where each element represents the
sequential order of a specific patient visiting the
corresponding hospital.

It is noteworthy that if patient u; has consecutive sequential
orders within h,, the server will retain the earliest one and
aggregate the medical records of corresponding visits as those
of the consolidated instance for u;. Additionally, the subsequent
sequential orders will be decremented accordingly. What’s more,
if more than one hospitals have the same sequential order for a
patient, the server can order them randomly or repeat preceding
steps with bigger T for these hospitals to get precise sequential
orders.

Stage 4: Tree Construction involves the conversion of the
healthcare scenario into a healthcare tree.

As illustrated in Fig. 3, each non-root node (intermediate and
leaf nodes, denoted as IV;) of the healthcare tree is labeled with
the ID of a specific hospital. Its attributes comprise a patient
information table storing details of certain patients, encompass-
ing their IDs and numbers of medical records. Each node can
have multiple child nodes which signify patients referred from
the parent hospital to the respective child hospital. The retrieval
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path from the root node to a child node delineates the visit
sequence of particular patients. Furthermore, the patient details
are archived in the patient information table of the terminal node
in its retrieval path.

For instance, the label of Ny is 2, signifying hs. The
branch Np — N7 — N3 — N3 signifies the visit sequence
h1 — ho — hs, where node N3 records details of all patients
with S = [hq, ho, hs] (e.g., u1) in its patient information table.
The construction of a healthcare tree is delineated as follows.

Step 7 The server initializes a healthcare tree with a root

node.

The server repeats Step 8 and Step 9 for each patient u; € U:

Step 8 The server checks whether the branch corresponding

(s)

to u;’s visit sequence S; = [h§1)7h§2), ook ex-

ists. If not, it constructs the corresponding branch,
i.e., constructs Np — N(hl(-l)) — N(h§2)) — ...
N(hl(.s)). For instance, in Fig. 3, the red line denotes
that upon inserting the visits of uo, the branch Np —
N (hg) — N(hs) — N (hy,) does not initially exist.
As a result, the server branches from N, to create
nodes N7 and Ng, labeled as 3 and m, respectively.
The server identifies the terminal node in w;’s re-
trieval path and stores his/her information in its patient
information table. For instance, to insert the visits
of ugy, the server locates the last node N (h,,) of
Nr — N(hg) = N(hs) — N(h,,) (ie., Ng), and
then records uso’s information in Ng’s patient infor-
mation table.

The original healthcare scenario possesses complex graph-
theoretic properties, posing non-negligible challenges in terms
of scheduling complexity and retrieval efficiency. Hence, the
graph-based healthcare scenario is further transformed into a
healthcare tree. Ultimately, the server accomplishes the ordering
task while keeping sensitive visit time private.

In the processing of Ordering, the server has meticulously
initialized a polling matrix to systematically collect visit infor-
mation from each hospital h, € H. It is crucial to note that
once the polling matrix is disseminated, the server no longer
has access to it. This intentional measure serves as a safeguard
to prevent the server from obtaining any additional inferences
beyond the originally obtained information. Such an approach
minimizes the potential for biased or intrusive analysis by the
server to ensure privacy preservation.

Step 9

B. Batch Scheduling for Penalty-Aware Split Learning

1) Problem Formulation: Penalty Function: To yield a tun-
able balance between communication costs and data loss, we
use a weighted summation of them to construct the final penalty
function penalty(B). It indicates the overall overhead of a
specific batch scheduling.

penalty (B) = a- DP (B) + (1 — «) - Ciotar (B), (7)

where « adjusts the impact of C,.; and DP , and is set to be
0.5w.l.o.g. If one is less tolerant of missing data (or excessive
communication costs) during the training process, it can increase
(or decrease) the value of a.
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Fig. 4. The flow diagram of Data Selection, where u; and w,, have visited

certain hospitals in the same relative order.

Optimization problem of penalty-aware scheduling: Based
on the above analysis, the calculation of batch scheduling is
transformed into an optimization problem that finds a proper
schedule (controlled by the indicator z) that minimizes the
overall penalty.

min  penalty (B) 8)
st U, Ny, = 0 (k1 # ko) ©)
u, €U, CU (10)

Vu; € Uy, ;5 x? =[Sk, S(us;z;) = Sk (11)

Aui €U, (S(ug;zi) =Sk) A (us ¢ Uy)  (12)

var ) € {0,1},z € [1, K]. (13)

Wherein, S(u;; X;) is the selected hospital sequence of u;, ..,
ifxf =1 (or = 0) then hl(-j) € S(u;X;) (or ¢ S(uy;X;)). Here,
hl(-j ) represents the hospital that records the j** data segment of
u;. Specifically, constraint in (9) states that the healthcare data
of one patient is only assigned to at most one batch. Constraint
in (10) denotes the index of the batch that w; is assigned to.
Constraint in (11) requires that the visit sequence of all the
patients in the same batch By, is the same as Sy,. Constraint in (12)
guarantees the completeness of the scheduling by adding all the
patients that have the same visit sequence after data discarding
to the same batch.

Solution analysis: Communication efficiency is crucial for
accelerating distributed deep neural network [33]. However, due
to the significant variability of patient visit sequences, training
a model using unprocessed data would result in frequent tran-
sitions among clients, introducing significant communication
costs. Fortunately, there are similarities in visit sequences. For
example, patients from different prefecture-level cities may be
referred to the same higher-level hospital after visiting different
hospitals in their respective towns. Alternatively, they may ini-
tially visit the same hospital for treatment but later be redirected
to different hospitals for further diagnosis and treatment due to
varying causes of illness. To fully utilize the similarities in visit
sequences to minimize penalty, the server performs three essen-
tial components: Data Selection, Combinatorial Optimization,
and Model Partitioning.

2) Data Selection. Basic Idea: As shown in Fig. 4, the core
idea of Data Selection is to sacrifice some medical records of
certain patients to merge their visit sequences, with the ultimate
goal of reducing communication costs while ensuring adequate
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utility. This problem falls in a binary programming problem
concerning X to minimize penalty(B).

In the context of original healthcare scenario, a pa-
tient u; € U with a visit sequence denoted as S(u;;X;) =
{3 hIis associated with X; = {1}~ Itis crucial
to emphasize that |S| manifests variations in both content and
length among different patients. The binary programming prob-
lem concerning X entails the assignment of x¥ = 0, indicating
the exclusion of the k*" segment d¥ for w;, thereby resulting
in the elimination of h{*) from S(u;;X;). As illustrated in
Fig. 4, 1 = 0 signifies that the first segment of u,, has been

omitted and the removal of hg) = hy, from S(u,;X,). By
employing appropriate 01 programming techniques to handle
X; and X, the equivalence S(u1;X;) = S(u,;X,,) can be
achieved, whereby u,, discards a portion of his/her healthcare
data. Consequently, the original training batches, namely B; =
{S1,{u1}}, and By = {Sa, {un }}, can be consolidated into a
unified training batch denoted as B’ = {S', {uy, ua}}. Itis note-
worthy that integrating their training paths effectively reduces
the model communication (C'r¢), and judiciously discarding
data contributes to curtailing parameter communication (Cp).
The efficacy of this programming endeavor is ascertained when
the metric penalty(B) exhibits a reduction, i.e., penalty(B') <
penalty(By) + penalty(Bs). The core objective of Data Selec-
tion lies in assigning valuesto X = {Xy, Xy, ..., X}, thereby
minimizing the overall penalty(B).

Algorithm Design: Data Selection can be formulated as a
capacity vehicle routing problem (CVRP) [34] with relaxed
constraints, allowing passengers to disembark en route and dis-
regarding issues of overloading. It is noteworthy that CVRP has
been proven to be an NP-hard problem [35], and this extended
version of CVRP is also NP-hard. Therefore, Data Selection
proposes employing a greedy strategy to obtain an approximate
solution.

Given two batches, B; = {S;,U; } and By = {So,Us}, the
consolidation attempt of Data Selection is as follows:

Step 1 A longest common subsequence, denoted as S, is

computed for visit sequences S; and Ss.

Step 2 Each X; for u; € Uy |JUs is calculated to realize

corresponding visit sequence S(u;; X;) = §'.

Step 3 The change of penalty(B) after and before consoli-

dation is computed:

A penalty = penalty (B") — penalty (By) — penalty (Bs) .
(14)

Data Selection attempts to consolidate each batch with
other batches separately and finally selects the consolidation
with the maximum decrease in penalty (i.e., Min Apenalty
and Apenalty < 0). Meanwhile, the healthcare tree would be
modified accordingly by deleting or adding nodes. If no consol-
idation decreases penalty (i.e., VB;, B; € B, Apenalty > 0),
the batch remains unchanged. Data selection repeats this process
until all batches are stabilized.

3) Combinatorial Optimization: Basic Idea: As Shown in
Fig. 5, the core concept of Combinatorial Optimization is to
adjust the training order of batches to maximize utilization of
common parts in visit sequences so that model communication
(C'pp) can be minimized. This part corresponds to assignment
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The flow diagram of Combinatorial Optimization.

Fig. 5.

4

of z;(u; € U) in (13), which is transformed to pairing By =
By (k,j € [1, K]). Moreover, Combinatorial Optimization
does not modify the value of X, so it effectively reduces Ctytq;
without introducing any additional D P. This problem falls in
searching for the optimal order of B to minimize penalty(B).
The initial training order is determined by a depth-first search
on the processed healthcare tree. This order only uses the simi-
larities found in the prefix subsequence, without considering the
shared characteristics in the middle and suffix subsequences.
As illustrated in Fig. 5, adhering to the original training order
B = [By, By, B3] necessitates five iterations of model transmis-
sion. However, by rearranging the order to B’ = [By, B3, B3],
both prefix and suffix commonalities can be simultaneously ex-
ploited, resulting in a reduction to only three iterations of model
transmission. Consequently, this modification leads to a decrease
in the amount of model communication required. The primary
objective of Combinatorial Optimization lies in generating an
optimized order B = [B(y),B(g), . . ., B(jz))] tailored specifically
to the processed healthcare tree, thereby minimizing the overall
penalty(B).
Algorithm Design: As the size of B increases, the solution
space for Combinatorial Optimization grows exponentially, ren-
dering the task of finding the optimal order that minimizes the
penalty(B) an NP-hard problem [36]. To address this challenge,
Combinatorial Optimization adopts a parallel random-start hill-
climbing algorithm to approximate a solution. The algorithm
follows the following steps:
Step I Randomly select an initial node B; = {S;,!;}, and
set candidate batches B* = B — B;.

Step 2 Identify a batch B, = {S;,U;} € B* as a successor
to minimize the distance between S; and S;, and then
delete B; from B*. The distance is defined as:

D(Si,S;) Z ) (M5 + M)
k=1
k=[S;|
+ Y MYy, (15)
k=1S:|+1
where I(/\/lf,/\/lf) =0, if SF = Sé? and MF = M?, else 1,

assuming with generality that |S;| < |S;| and vice versa.

Step 3 Repeat Step 2 until B* is empty.

To mitigate the risk of falling into local optima, Combinatorial
Optimization repeats these steps for k times and selects the
solution with the minimized penalty(B) as the final order.
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C. Split Learning on Batches

The third crucial phase for STSL is to flexibly partition a
global model into multiple segments and guide the hospitals to
train a model collaboratively.

1) Model Partitioning: For each batch By, = {Sg, Uy}, the
relevant hospitals are required to train a M -layer global model
M =[wy, we, ..., wy] (wlo.g., each LSTM unit is a
layer for the LSTM model in this work) collaboratively. The
server splits the global model M into multiple segments
M, M, .. Mlkg"" and allocate M, to corresponding hospital
hg) € Sk. Specifically, when [Sy| < M, the server sequentially
divides the model into [Sy| — 1 segments with M/ /|Sk| layers
and assigns the remaining to M " St , as more recent patient visits
deserving of more layers. In the case where |Sy.| > M, the server
rotationally distributes M layers to the first |[Sg| — 1 hospitals

and assigns the remaining layers in the recent rotation to MlSk‘

2) Model Training: Under the scheduling of the server, h,i )
is required to calculate the outputs (i.e., hidden layer activation)
of its sub-model M}, with the batch data it holds and transmits

these intermediate results to hff). Similarly, h;f) calculates
outputs of M3 based on the outputs of the former sub-model
and its local segmented data. The propagation and activation
transmission ends with a prediction at the last hospital h(‘s"‘)
which estimates a loss between the ground truth and the pre-
diction. Specifically, in this work, STSL focuses on a binary
classification and employs binary cross-entropy loss as shown
in (16). Next, the last hospital initials back-propagation with gra-
dient calculation and transmission, optimizing the sub-models
in each hospital with gradient descent.

—[y - log(p) + (1 —y) - log(1 — p)],

where y denotes the true label of one record and p represents the
predicted probability, i.e., sigmoid output.

After several rounds of forward and back-propagation, the
server will stitch the tuned sub-models of batch By, together into
a complete model M, as the updated global model. Concretely,
sub-models that are not reassigned are updated directly, while
those that are reassigned have their weights w; updated using
scale-based federated averaging, ensuring that information from
each hospital is incorporated. Subsequently, the server partitions
M, into [Sg, , , | sub-models for the learning of the following
batch By, ;. Finally, after processing all batches, the server
releases the concatenated model as the joint-learned model,
which is expected to integrate knowledge from the distributed
healthcare data across hospitals.

Loss =

(16)

V. FORMAL PROOF OF PRIVACY PRESERVATION

STSL guarantees privacy preservation throughout the frame-
work, embodied in visit ordering before training and batch
training process. The privacy preservation is grounded on the
honest-but-curious assumption, which means each entity would
perform the ordering or scheduling tasks in STSL honestly but
may deduce the patient data of others. This section analyzes
the uncertainties of both the occurrence of a patient’s visit at a
specific time and the number of participating hospitals to prove
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the privacy of visit ordering and narrates the privacy property
of batch learning equivalent to that of split learning to show the
security of the training process.

A. Visit Ordering

If there is only one hospital, it equals centralized learning
without interactions with other hospitals. The security naturally
holds. As for two or more participating hospitals, the first chosen
hospital h, receives an all-0 polling matrix, revealing nothing.
Hence, we only need to prove that non-starting hospitals couldn’t
deduce sensitive information from their received polling matrix.

Assume without loss of generality that there are n patients
having visited s hospitals, randomly chosen from m hospitals,
respectively. The polling matrix is with time granularity 7" and
the first chosen hospital randomly sets y? + = 1 withaprobability
p (Step 2 in Roll Polling). The polling matrix Y * is accepted by
hospital h; after o hospitals have modified it, and the original
matrix without disturbance is Y (i.e., p = 0).

Theorem 1: The proposed STSL ensures that the occurrence
of a patient’s visit at a specific time is uncertain, under the
assumption p = 0.5. For any hospital h;, it is impossible to
deduce whether a patient wu; has visited previous hospitals in
period ¢ (i.e., h; couldn’t infer the value of y; + from y;, with
additional certainty).

Proof: The probability of y;; =1 is denoted as ¢ (i.e.,
P(y;: = 1) = ¢). Then the value of y; 1 is determined as:

Yis Vit 0 1

vo, (P=1-q) (P=q)
0(P=1-p) 0 1

1 (P =p) 1 0

Hospital /1; deduces y;,; = 1 from y; , = 1 with probability:
q(1-p)

(1=p)+p(1—q)

Simply, h; deduces y; ; = 1 from y;, = 0 with probability:

P (yie =1y, =1) = (17)

pq
pg+(1—p)(1—q)

Obviously, if P(y;: = 1]y, = 1) = P(y;,r = 1]y}, = 0),
hospital h; couldn’t get additional information about ¥; ; from
y; - According to (17) and (18), if p = 0.5, the equation is
satisfied for any z.

Theorem 2: The proposed STSL guarantees that the number
of participating hospitals is uncertain, under the assumption
p = 0.5. For any hospital h;, it is impossible to derive how
many hospitals have modified the polling matrix(i.e., h; couldn’t
deduce the value of = from Y™).

Proof: In case p = 0 and there are n patients having visited
s hospitals, randomly chosen from m hospitals, respectively,
so there will be nsz/m elements with values of lin Y. With
disturbance added, the number of elements N (x) with values of

(18)

P (yt =1y, = 0) =
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lin Y* will change to:

nsx

Na) =22 (1-p) +

(=)
m
If N (x) is probabilistically independent of z;, we can conclude
that h; couldn’t derive the value of x from Y. Solving the linear
algebraic equation N (z) = N(z + 1), we can get p = 0.5.
Given the above theorems, we can conclude that any hospital
can’t infer additional information during Roll Polling. What’s
more, once the polling matrix is disseminated, the server no
longer has access to it. This intentional measure serves as a
safeguard to prevent the server from obtaining any additional in-
ferences. Taking into account that only the sequential orders are
processed during the subsequent stages, visit ordering is affirmed
to be secure. Indeed, privacy-preserving visit ordering design
possesses generosity to the problem of secure computation of
multi-dimensional data among multiple parties.

19)

B. Batch Training

The batch training mechanism inherits the fundamental secu-
rity properties of traditional split learning. During the training
process, each group of hospitals processes selected data through
their local models, strictly adhering to the privacy-preserving
protocol established in conventional split learning. More pre-
cisely, the security of batch training is rooted in the principle
that only smashed data, comprising activations and gradients,
are exchanged between the clients (i.e., hospitals) and the server,
rather than raw data or model parameters. This design creates
an effective information barrier, as transforming raw data into
activations through non-linear operations makes it computa-
tionally infeasible to reconstruct the original input. Similarly,
the exchange of gradients, rather than full model parameters,
provides additional protection for model security.

By maintaining these properties, our framework ensures input
data confidentiality, as patient data never leaves the local envi-
ronment, while also protecting model parameters and intermedi-
ate data from exposure. These security characteristics align with
the rigorous privacy standards of traditional split learning, mak-
ing the framework suitable for healthcare applications where
data confidentiality is of paramount importance.

C. Security Boundary

While the preceding subsections establish the security of
the proposed STSL framework under the honest-but-curious
assumption, this security guarantee is contingent upon the ab-
sence of collusion among participating clients. The framework
becomes vulnerable when multiple clients conspire to share
intermediate information, potentially compromising both the
confidentiality of patient visit times and the model integrity.

The security vulnerabilities manifest in two primary aspects:
First, through the roll polling in visit ordering, if a hospital
obtains the polling matrix from the predecessor of its preceding
hospital, it can systematically deduce the specific time intervals
during which patients visit the preceding hospital. This inference
process can be recursively applied to compromise the temporal
privacy of all participating hospitals. Second, the collaborative
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sharing of sub-models among hospitals in one batch would di-
rectly violate the model’s security, potentially exposing sensitive
parameters and learned patterns.

To address these security concerns in more stringent appli-
cation scenarios, several advanced cryptographic techniques
could be incorporated into the framework. For visit ordering
protection, homomorphic encryption presents a viable solution
to prevent collusion-based inference attacks. Regarding split
learning enhancements, two promising directions emerge from
existing literature: (1) the incorporation of carefully calibrated
noise into smashed data, as demonstrated in [37], and (2) the
implementation of secure aggregation protocols, as proposed
in [38], to mitigate potential data leakage risks. These advanced
security measures, while theoretically promising for enhancing
the framework’s robustness, extend beyond the current study’s
scope and are constrained by practical limitations, particularly
the page restrictions of this publication. Their comprehensive
exploration and implementation remain valuable directions for
future research endeavors.

VI. EXPERIMENTAL EVALUATION

In this section, we carry out a comprehensive evaluation of
STSL? based on the following three questions.

e Exp#l: How does the STSL-trained model perform?

e FExp#2: How much do optimizations affect scheduling?

e FExp#3: How much do penalty settings affect scheduling?

A. Settings

Dataset: Due to the limited availability of real spatio-temporal
distributed medical datasets, we construct our dataset on the
publicly available and highly representative elCU database [15].
This multi-center intensive care unit database includes vital
signs, care plans, diagnostic information, and more for 200,859
admissions from 139,367 patients across 208 hospitals in the
United States, covering the period from 2014 to 2015. First,
we filter 10,070 patients from e/CU who have multiple inter-
hospital visits and extract the 24-hour records from their most
recent and second-to-last ICU stays. We then select 13 numerical
variables, scaled between -1 and 1, and 7 categorical variables
to create a feature vector for each record. Consequently, our
dataset consists of 10,070 sequential samples, each comprising
48 records, with each record represented by a 20-element feature
vector.

Additionally, the proposed STSL has not been specifically
optimized for this dataset, which enhances its scalability to other
scenarios and datasets.

Healthcare Scenarios: We utilize the processed e/CU to syn-
thesize healthcare scenarios with varying configurations. For
each healthcare scenario, we assume that there are m hospi-
tals participating in training, with each patient’s s segments
randomly distributed among s out of the m hospitals. The
number of each segment’s medical records is also randomized.
Fig. 6 visualizes healthcare data distributions for a scenario
with m = 4 and s = 3 under different operations. The original

3 All the scripts could be found in Gitee: https:/gitee.com/ahaBCD/STSL.
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Fig.6.  Visualization of healthcare data distributions for a scenario withm = 4
and s = 3 under different operations. Each line represents a piece of patient
information. The color and length of the lines reveal the hospitals where the
segments are stored and the numbers of their medical records.

healthcare data distribution is irregular due to varied patient
visit sequences. After applying privacy-preserving visit order-
ing, patients with identical visit sequences are grouped, but
the distribution remains scattered. Data selection discards some
sequences to concentrate the distribution, while combinatorial
optimization refines the sequence order for improved coherence.

Training Task and Metrics: We consider the task of predicting
patient discharge status, which is a binary classification task
where O or 1 represents the survival or death of the patient after
ICU stays. The discharge status of each patient’s last admission
is used as the label. Among the 10,070 samples, 1,019 (10.12%)
are labeled as “death” (i.e., 1), while 9,051 (89.88%) are labeled
as “survival” (i.e., 0).

There are three metrics to evaluate model performance:

e Accuracy: Prediction accuracy of discharge status.

TP+TN
TP+TN+FP+FN’

wherein T'P, F'P, TN, and F'IN denote the proportions
of “death” predicted as “death”, “survival” predicted as
“death”, “survival” predicted as “survival”, and “death”
predicted as “survival”, respectively.

® Precision: Prediction accuracy of positive samples.

(20)

Accuracy =

TP
Precision = ————. 21
rectsion TP T FP 21
® Recall: Prediction coverage of positive samples.
TP
Recall = ————. 22
T TPYEN @2)

e F'1: F'1 score, which is the harmonic mean of precision
and recall, providing a balance between the two metrics.

Pl 2 - Precision - Recall

— 23
Precision + recall @3)
There are three metrics to evaluate optimization impact:
e Accuracy: Prediction accuracy of discharge status.
e (CV:Communication volume for each epoch.
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e DR: Data retention ratio, the ratio of participated data
volume to original data volume.
\D \ <| dj\ )

2 zﬂ-z‘f’” (1e21)

D;eD

As for the evaluation of penalty settings impact, we focus on
CV and DR.

Model: We implement a model consisting of 3 basic LSTM
units for all frameworks for the sake of fairness. Additionally,
STSL focuses on the construction of a new framework suitable
for distributed segmented data and does not care about the
problem of model tuning [39]. Future research can further adjust
the training model to obtain better performance.

Baselines: As discussed above, existing methods don’t con-
sider segmented healthcare data learning as they inherently
assume that the complete sequential data of a patient is stored in
one institute. Due to the absence of a suitable state-of-the-art, we
compare the model performance of the first explored segmented
data learning framework(STSL), with conventional SL and FL
(FedAvg [20]). Meanwhile, we test three variants (STSL (w/o
S), STSL (w/o D) and STSL (w/o C)) to illustrate the
effectiveness of each optimization module.

e SL:In conventional SL, the model is statically divided into
two parts, with the first LSTM unit assigned to a client
and the remaining two LSTM units allocated to the server.
Within each healthcare scenario, n hospitals with a server
engage in the training process. During each round of global
training, each client sequentially collaborates with the
server to train the model, passing its client model to the next
client in line. In such a framework, healthcare segments
relating to the same patient across different hospitals cannot
be amalgamated, and the server-side model only inputs the
hidden state sequence without additional input.

e FL: In FedAvg, n hospitals with a server participate in
the training process. In each global training round, each
client h; downloads the global model, trains it on local
data, and then sends the model updates to the server, which
performs federated averaging to update the global model.
Similarly, healthcare data from the same patient across
different hospitals cannot be combined.

e STSL (w/o S): A framework similar to STSIL without
batch scheduling (i.e., Data Selection and Combinatorial
Optimization).

e STSL (w/o D): A framework similar to STSL without Data
Selection.

e STSL (w/o C): A framework similar to STSI, without
Combinatorial Optimization.

We utilize Python to implement the above frameworks and

conduct the following evaluations on a computer with NVIDIA
GeForce RTX 3070 for five healthcare scenarios.

DR(D)

(24)

B. Results

(Exp#1) Different Learning Frameworks: The experimental
results illustrated in Fig. 7 reveal the superior performance
of STSL over both FL and SL. Notably, STSL demonstrates
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Fig. 7. Comparison of learning frameworks across varying hospital counts

(m) and data segments ().

significant performance enhancements, achieving over 10% im-
provement in Accuracy, more than 21% increase in Precision
across various scenarios, and consistently surpassing SL by over
22% in F'1 across all scenarios.

While FL. demonstrates competitive performance in specific
metrics, particularly achieving comparable F'1 scores to STSL
and even superior Recall values, a substantial compromise
in Accuracy offsets this advantage. This phenomenon can
be attributed to FL’s tendency to produce biased predictions,
frequently classifying samples as positive. In extreme cases,
FL generates nearly equiprobable predictions for positive and
negative classes, rendering its outputs practically meaningless.

The superior performance of STSL can be primarily attributed
to its effective utilization of both temporal and spatial data
characteristics through inter-hospital consultation mechanisms,
thereby enhancing predictive accuracy. In contrast, FL’s limita-
tion to local hospital data and SL’s restriction to client-provided
smashed data significantly constrain their ability to form com-
prehensive training sets, particularly given the inherent sparsity
of patient visit records. These limitations are especially pro-
nounced in SL, where the server’s capacity for data integration
is fundamentally restricted.

However, our findings also highlight the sensitivity of model
performance to scenario complexity, the number of hospitals
(m) and data segments (s), within the STSL framework, sug-
gesting the necessity for extensive model-tuning experiments
to maintain optimal performance. While this aspect represents
a valuable direction for future research, it extends beyond the
current scope of our investigation.

(Exp#2) Ablation results: In experimental settings, we imple-
ment the basic LSTM-based model and evaluate each frame-
work* with 128 hidden layer nodes by C'V and Accuracy, as
presented in Table III. Additionally, in the real world, the trained
models are often larger and more complex. To simulate real-life

4To maintain model utility, as well as reducing communication costs, the
penalty coefficient 5 may be different for each scenario.
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TABLE III

PERFORMANCE COMPARISON (128 NODES) ACROSS VARYING HOSPITAL COUNTS (1) AND DATA SEGMENTS ()

L . Communication Volume (MB) Accuracy
E 'earmngk m=4 m=5 m=6 m=5 m=6 m=4 m=5 m=6 m=5 m=6
ramewor s=3 s=3 s=3 s=4 s=4 s=3  s=3  s=3  s=4  s=4
STSL (w/o S) 61.57 124.43 229.19 308.86 867.58 0.902 0873 0.874 0.839 0.758
55.17 99.98 203.00 252.41 721.5
STSL (w/o D) (89.60%) (80.35%) (88.57%) (81.72%)  (83.16%) 0902 0873 0.874 0.839 0.758
23.80 43.01 54.65 83.45 180.61
STSL (w/0 C)  seccan)  (34.56%) (23.84%) (27.02%)  (20.82%) 0919 0951 0943 0.858 0.912
17.40 24.38 31.95 48.53 82.83
STSL (2826%)  (19.60%) (13.94%) (15.71%)  (9.55%) 0919 0951 0.943 0.858 0.912
TABLE IV
PERFORMANCE COMPARISON (1024 NODES) ACROSS VARYING HOSPITAL COUNTS (m) AND DATA SEGMENTS (s)
Learni Communication Volume (GB) Data Retention Ratio (%)
E earmngk m=4 m=>5 m=6 m=5 m=6 m=4 m=>5 m=6 m=>5 m=6
ramewor s=3 s=3 s=3 s=4 s=4 s=3 s=3 s=3 s=4 s=4
STSL (w/o S) 2.45 5.89 11.63 15.54 46.15 100 100 100 100 100
2.10 4.54 10.20 12.44 38.15
STSL (w/0 D) (s5680) (77.27%) (87.67%) (80.09%) (82.66%) 100 100 100 100 100
0.94 1.89 2.76 4.46 7.00
STSL (w/o C) (38.55%) (32.14%) (23.69%) (28.68%) (15.20%) 73.88 66.54 66.49 7407 66.34
0.63 0.87 1.19 1.84 2.96
STSL (25.53%) (14.83%) (10.25%) (11.85%)  (6.42%) 7388 66.34 6649 7407 6634
Comparison TABLE V
4~ STSL(wlo 5) s=3 PERFORMANCE WITH DIFFERENT PENALTY SETTINGS
100 —e— STSLs=3
STSL (w/o S) s=4 ot <
80| - ssis—s 8 CVAICV, (%) DR (%) —pmber of Distinct Sequences
3 60 [0.15, 0.45, 1.5, 1.8] 3.56 50.67 1 26
= [0.25, 1, 2.5, 3] 6.87 61.72 35 24
3 40 [0.4, 1.6, 4, 4.8] 9.48 71.60 81 12
20 ;:
0{ ¥ through STSL, the C'V can be reduced to an acceptable value
m=4 m=5 m=6 m=7

The number of hospitals participating

Fig. 8. Communication volume trends across varying hospital counts (1) and
data segments (s).

situations, the C'V's and D Rs of large models with 1024 nodes
are also illustrated in Table IV.

It can be observed that both Data Selection and Combinatorial
Optimization operations lead to a decrease in C'V. Compared
to Combinatorial Optimization, which modestly reduces C'V'
(typically by 10% ~ 20%) without compromising data, Data
Selection sacrifices a portion of data to achieve a significant
reduction in C'V (usually 60% ~ 70%). With judicious discard-
ing of segments, more samples could be consolidated together,
so that Accuracy is improved (1.7% ~ 15.4%), especially in
complicated scenarios with more hospitals participating and
patients having more transfer records. Meanwhile, the effect
of Communication Optimization also becomes increasingly ev-
ident in complex scenarios.

As shown in Fig 8, in a conventional learning framework, C'V/
grows exponentially. Whereas, in STSL framework, the growth
is relatively smooth. Furthermore, in large model environments,
the original C'V is overwhelmingly high. After scheduling

while retaining a majority of data. This observation shed light
on cooperatively training a big model.

(Exp#3) Effects of the Data Penalty: In a scenario where
the model parameters (128 hidden layer nodes) and health-
care scenario (m = 6 and s = 4) remain static, we conduct
comparisons to analyze the impact of different penalty settings
on training scheduling. During this experiment, each penalty
setting has n = [1,0.7, 0.6, 0.4], only the staircase penalty value
[ differing in each setting. The comparative results of scheduling
are presented in Table V. It can be inferred that as penalty
values increase, scheduling tends to retain more segments of
patient visits, leading to an improvement in DR (20.93%),
accompanied by a slight increase in C'V (5.92%), which falls
in an acceptable range. As illustrated in Exp#2, fewer batches
may bring improvement in Accuracy, but more data discarding
may resultin distorted data which injures model performance. In
practice, the values of the data penalty could be further adjusted
to achieve even better performance.

VII. DISCUSSION

Practicability and Generalizability: With the increasing mo-
bility of the population and the improved implementation of
the hierarchical consultation system, people’s healthcare data
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is often segmented and distributed across multiple hospitals.
According to recent findings, Chinese residents made an average
of six visits to healthcare facilities in 2022 [10], with 110.5
million of these visits occurring across provinces [11]. The
widespread presence of segmented data highlights the imme-
diate promise and broad potential of STSL for learning tempo-
rally and spatially distributed data, which is heterogeneous both
within individual patient records across hospitals and among
visit sequences of different patients.

STSL’s ability to handle temporally and spatially distributed
data makes it particularly suitable for various domains, such as
activity monitoring across different autonomous domains (e.g.,
anxiety analysis with user data on vehicles and watches), intel-
ligent operation and maintenance in distributed systems (e.g.,
workload migration across different nodes of supercomputer
system), and network measurement tasks (e.g., traffic analysis
over multiple routers). These scenarios, which predominantly
involve time-series data collected by diverse institutions, can
readily adapt to the STSL framework. We also believe that
the integration of STSL with the split Al inference frame-
work [40], [41], [42] opens new possibilities for real-time and
distributed intelligent systems, enabling efficient data process-
ing and decision-making across complex, multi-domain envi-
ronments.

Differential Weights: As multiple sequences and hospitals are
involved in the learning, an intuitive improvement is assigning
different weights to them. On the one hand, one could use
the attention mechanism [43] to prioritize hospitals with vaster
medical records by assigning more model layers or blocks to
them and setting more weights to their sub-models, as these
hospitals better record patient health status. On the other hand,
hospitals vary in disease-specific expertise, so one could set more
model layers or blocks for those hospitals that are known to be
excellent for diagnosing specific diseases and more weights for
their sub-models.

Model Substitution and Tuning: We state that the basic model
(i.e., LSTM) used for splitting learning in this work could
be easily replaced by other mainstream sequential data anal-
ysis models, such as Transformer and GNN. This flexibility is
achieved through customizable model partitioning mechanisms
that distribute layers or units across participating clients, coupled
with adaptive aggregation schemas tailored to specific model
structures. Additionally, STSL enables advanced fine-tuning
techniques, such as genetic algorithms [44] and Bayesian op-
timization [45], for precise parameter adjustment and perfor-
mance optimization.

VIII. CONCLUSION

This work focuses on learning sequential data and identifies,
in the case of healthcare data, the segmented situation of data
that is generated by multiple users now and then and stored in
differentinstitutes. STSL has thus been proposed as a framework
for exploring the sequential knowledge in the segmented data. In
STSL, we provide the privacy-preserving visit ordering method
to find out the visit sequences of multiple patients paying visits
to multiple hospitals without exposing either each patient’s visit
time or visit event. Meanwhile, we have also presented the
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scheduling design that separates all the segmented data into
order-aligned batches for consecutive split learning. Theoretical
proof demonstrates the security of the framework for learning
about patient data and the ordering process for keeping visit
information private. Dedicated to the learning of segmented
data, both the privacy-preserving design and the batch-based
learning paradigm in STSL could shed light on the exploration
of such data forms. In the future, we believe extending STSL
to streaming data for learning on dynamically generated data is
worth investigating.
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